
Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

Grid DataBlade Programmer Guide

- Version 1.4 -

© Barrodale Computing Services Ltd.
August 29, 2002

Table of Contents

INTRODUCTION .. 1

OVERVIEW.. 1
DATA IMPORT AND EXPORT.. 1
FUNCTIONALITY ... 1
SAMPLE APPLICATIONS... 2

GRID-SPATIAL CONVERSION ... 2

OVERVIEW.. 2
THE GRID META-DATA .. 2
THE FORWARD PROCESS... 4
THE REVERSE PROCESS .. 5
EXTRACTING GRID DATA ... 6
SPECIAL CASES... 7

Step Sizes... 7
Non-Uniform Grid Spacings ... 7

SAMPLING SCHEMES... 8
Nearest-Neighbors .. 8
N-linear Interpolation ... 8

TECHNICAL MODELS.. 9

OPERATING MODEL .. 9
Client Assembling vs. Server Assembling.. 9
Data Assembling Model .. 9

DATATYPES .. 10

OPERATION .. 10

INSTALLATION AND CONFIGURATION ... 10
FILE-ORIENTED INTERACTION .. 10

Importing GIEF Files.. 11
Exporting GIEF Files.. 11

DIRECT OBJECT INTERACTION .. 12
Storing Data .. 12
Modifying Data ... 13
Extracting Data ... 14

APPLICATION PROGRAMMING INTERFACE (API) .. 15

SQL API LIBRARY ... 15
Examining a GRDValue .. 15
Modifying a GRDValue... 15
Extracting a GRDValue... 17

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

Additional Support Functions ... 17
C API LIBRARY .. 18

Types and Constants: .. 19
Creating and Setting a GRDValueI... 19
Examining the Contents of a GRDValueI.. 24
Converting between a GRDValueI and a GRDValue (var binary) Type... 28
Creating and Setting a GRDSpecI Type.. 28
Converting between a GRDSpecI and a GRDSpec (var binary) Type .. 31
Example: Inserting Data Using ESQL/C... 32
Example: Extracting Data Using ESQL/C .. 33

JAVA CLIENT API .. 36
Class Descriptions... 36
Example: Inserting Data Using Java ... 36
Example: Extracting Data Using Java... 38

APPENDIX A: EXAMPLES OF GRID-SPATIAL CONVERSION .. 39

DEFAULT GRID META-DATA .. 40
TRANSLATED GRID ... 41
SCALED GRID.. 42
COLUMN MAJOR SCAN ORDER ... 43
SCAN DIRECTION .. 44
ROTATION... 45
NON-UNIFORM GRID SPACING ... 46
COMBINING NON-UNIFORM GRID SPACING WITH ROTATION ... 47
COMBINING NON-UNIFORM GRID SPACING WITH ROTATION AND TRANSLATION 48

APPENDIX B: EXAMPLES OF GRDVALUE AND GRDSPEC... 49

ORIGINAL GRID BASE LOCATION AND SAMPLING LOCATIONS ... 49
GRDVALUE REPRESENTATION... 49
GRDSPEC REPRESENTATION .. 51

APPENDIX C: GRID IMPORT-EXPORT FORMAT (GIEF) .. 51

FEATURES... 51
LIMITATIONS .. 51
CONVENTIONS .. 52

Grid Size.. 52
Supporting Grids that Wrap .. 52
Mapping Projection... 52
Translation .. 53
Affine Transformation ... 54
Nonuniform Axes ... 54
Variable-Specific Attributes .. 55
Other Attributes... 55
Grid Variables... 56

MAPPING NAMES FROM GIEF TO THE DATABASE .. 56
AN EXAMPLE GIEF FILE (AS A CDL FILE)... 57
SAMPLE SPATIAL REFERENCE TEXT ... 58

APPENDIX D: USING S-EXPRESSIONS TO SPECIFY GRID EXTRACTION.............................. 65

TERMS IN S-EXPRESSIONS UNDERSTOOD BY THE GRID DATABLADE... 65
EXAMPLE OF AN S-EXPRESSION.. 66
FORMAL S-EXPRESSION DEFINITION .. 67

APPENDIX E: ERROR MESSAGES.. 68

USER ERROR MESSAGES... 68
PROGRAM FAILURE ERROR MESSAGES... 69

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

1

Introduction

This document describes the Grid DataBlade, an Informix release 9.x server extension
developed by Barrodale Computing Services to store and retrieve gridded data. The
intended readership for this document is Grid DataBlade client application programmers.

Overview

The Grid DataBlade is an Informix Dynamic Server (IDS) extension that supports the
storage, update, and fast retrieval of scalar data that has been sampled at each point of a
rectilinear grid of two, three, or four dimensions. Two of the dimensions may be
associated with the planar axes of a geographic projection, and each point of gridded data
may have more than one value associated with it.

The Grid DataBlade uses an internal tiling scheme that reduces the number of disk seeks
while being transparent to the caller, aside from the ability to specify tiling sizes. It also
processes query results on the server, minimizing the amount of network I/O and client-
side CPU time required.

Data Import and Export

The import/export format used by the Grid DataBlade is Grid Import-Export Format
(GIEF). GIEF is a NetCDF dialect that is general enough to represent any grids of
primitive scalar data elements (i.e., 1, 2 or 4-byte integers, 4 or 8-byte floating point
values). It allows source grid files of various formats to have one internal uniform
representation. Conversion programs can be employed to convert grid files between
other formats (e.g., GeoTiff, GRIB, and dialects of NetCDF) and one or more GIEF files.
The GIEF format is described in detail in this report (it should be noted that a separate
GIEF standard, called GIEF-F, has been produced independently by FNMOC1).

Functionality

In addition to simple storage and retrieval, the Grid DataBlade supports:

• interpolating data between grid points using nearest neighbor or n-linear

interpolation;
• extracting data in a different geographic projection from that used to create it;
• specifying particular axes as having non-uniform grid steps;

1 Fleet Numerical Meteorology and Oceanography Center, Monterey, CA.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

2

• storing multiple datasets (as many as 10) per grid, allowing several values of different
types to be stored at a single point;

• storing and extracting data along arbitrary basis vectors rather than along the axes of a
projection.

Sample Applications

Some possible applications for the Grid DataBlade are as follows:

• Geographical: for mapping a simple area of land, a 2D grid would suffice. Altitude

may be stored in a field along with ground type (i.e. water, rock, or sand) and other
important terrain features.

• Geological: a 3D grid may be used to store seismic data samples from geological

surveys with fields such as density and water permeability. Samples may be non-
uniformly spaced to provide more precise measurements near the surface.

• Meteorological: statistics on wind speed and direction may be input and analyzed in

terms of location (x, y and z) and time. The x and y vectors of wind speed may be
stored as two different fields in the same grid (as opposed to different rows in the
same table).

• Medical: gridded data is not limited to large-scale samples taken from the earth and

environment. It may also be used to map characteristics of the human body, for
example x-ray results or visual data. One demonstration of the Grid DataBlade (see
www.barrodale.com) uses data from the US National Library of Medicine Visual
Human Project to extract a two-dimensional slice (oriented at arbitrary angles) from a
three-dimensional dataset of the human body stored as a grid.

Grid-Spatial Conversion

Overview

This section provides a description of the concepts involved in the extraction of grid
information using the Grid DataBlade, and provides descriptions of the parameters and
processes involved in the conversion between spatial and grid coordinates. Examples of
grid-spatial conversion are provided in Appendix A.

The Grid Meta-Data

Meta-data (i.e., data describing the data actually stored in the grid) is associated with
each grid. This meta-data plays a key role in the conversion between grid and spatial
coordinates. In the descriptions below, upper-case strings denote the keywords

http://www.barrodale.com/

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

3

associated with the meta-data, which, where appropriate, are also defined in terms of
mathematical notation.

Each 4D2 grid contains the following meta-data:

• SRID: spatial reference system id recognized by Spatial DataBlade.

• FIELD NAMES and FIELD IDS: textual names and integer ids for each dataset

stored in the grid.

• DIMENSION NAMES: textual names for the grid axes, allowing names like

�pressure� or �level�.

• STARTPT: the location of the first element (in the specified spatial reference

system). This can be represented mathematically as a 4-element column vector s,
i.e.,

• BASIS: a set of four row vectors used to support the implementation of basis vectors.

This can also be represented mathematically as an 4x4 matrix V, where each row
represents a basis vector for the corresponding dimension, i.e.,

Note here that the keyword suffix range is from 0 to 3, while the subscript ranges are
from 1 to 4.

• NONUNIFORM: a set of four vectors used to support irregularly spaced grids. This

can also be mathematically represented as a 4xM matrix U, where M is the length of
the longest dimension (by analogy to BASIS above, each row represents a vector),
i.e.,

2 2D or 3D data is represented by a 4D grid with certain dimensions being of size 1.

.
3

2

1



















=

Ns
s
s
s

s

.

3
2
1
0

44434241

34333231

24232221

14131211

BASIS
BASIS
BASIS
BASIS

vvvv
vvvv
vvvv
vvvv

→
→
→
→



















=V

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

4

3
2
1
0

44241

33231

22221

11211

NONUNIFORM
NONUNIFORM
NONUNIFORM
NONUNIFORM

uuu
uuu
uuu
uuu

M

M

M

M

→
→
→
→



















=

Λ
Λ
Λ
Κ

U

Note: It is not necessary that the various dimensions have the same lengths;
therefore, it is expected that some values be missing in the matrix defined above.
These values will be denoted by X�s, and will not be used since they are out of range.
For example, we can represent a NONUNIFORM matrix U for a 2x3x1x1 grid by the
following:

• TILESIZE: a set of values specifying how the grid is stored into memory. This can

be represented by an 4-element column vector t, each element of which represents the
length of the tile in the corresponding dimension, i.e.,

With the exception of TILESIZE, all of these meta-data items play a role in determining
how spatial coordinates are computed from grid positions, and vice versa. Each set of
values determines the effect of one stage in the process of computing the spatial
coordinates.

It is noted here that data is stored in row major order by the Grid DataBlade, as is the
convention used in C and C++. (In contrast, FORTRAN uses column major ordering.)

The Forward Process

This process transforms a specified set of grid coordinate (i.e., location with respect to
the grid) to their corresponding spatial coordinates. Assuming we have a 4D set of grid
coordinates called GRIDCOORD (denoted by the 4-element column vector g), we
compute the spatial coordinates SPATIALCOORD (denoted by the 4-element column
vector p) as shown in the following steps. (In the expressions below, a and b are

.

41

31

232221

1211



















=

XXu
XXu

uuu
Xuu

U

.

4

3

2

1



















=

t
t
t
t

t

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

5

temporary 4-element column vectors of coordinates, introduced so that the process can be
broken into discrete steps.) Hence,

Step 1: Apply the non-uniform grid spacing.

For each dimension i (from 1 to 4)
igii ua ,= .

Step 2: Apply the basis vectors.

 b = Va.

Step 3: Offset by the start point.

 p = b + s.

The above three steps can be described more tersely as a function that maps (i0,i1,i2,i3)
to a new tuple defined by the expression:

p = Va + s.

The Reverse Process

This process transforms a specified set of spatial coordinates (i.e., location in space) to
the corresponding grid coordinates. It is approximately the reverse of the forward
process.

Step 1: Relocate the first element to the origin for the grid.

 b = p � s.

Step 2: Remove the effect of the basis vectors.

 a = V�1b.

Note: While V need not be orthogonal, it must be invertible for the reverse
process to succeed.

.;;;

4

3

1

4

3

2

1

4

3

2

1

4

3

2

1



















=



















=



















=



















=

b
b
b
b

a
a
a
a

p
p
p
p

g
g
g
g

bapg

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

6

Step 3: Remove the effect of the non-uniform grid spacing (assuming nearest
neighbors).

For each dimension i (from 1 to 4)
Determine the maximum value of j such that 1 ≤ j ≤ M and uij ≤ ai
gi = j + (ai – uij)/(ui,j+1 – uij)

Note: As previously mentioned, M represents the number of columns in the
matrix U. There is also an implicit constraint that the each row of U must contain
strictly increasing values if the reverse process is to succeed.

Extracting Grid Data

Extracting data from a grid involves both the forward process and the reverse process.
Conceptually, the extraction process involves the formation of a destination grid from a
stored source grid, and operates as follows:

For each grid position in the destination grid:

• Apply the forward process to the destination grid position to compute the spatial

coordinate corresponding to that position.
• If necessary, re-project that spatial coordinate from the destination grid�s projection to

the source grid�s projection.
• Apply the reverse process to the re-projected spatial coordinate to compute the

corresponding position g (GRIDCOORD) in the source grid.
• Compute a value from the source grid based on this position in the source grid.
• Store that value in the destination grid at the destination grid position.

The treatment of non-integer values in g (GRIDCOORD) depends on the nature of the
interpolation chosen. The nearest neighbor scheme rounds these values to the nearest
integer, while linear interpolation uses the fractional components of the positions to
compute a weighted average (see Section �Sampling Schemes� below).

Another item that needs explanation is the order of the spatial coordinates. First of all,
this order is immaterial as long as the application extracting the data uses the same
projection and ordering as the application that stored the data. The act of projecting the
coordinates, however, is a non-linear function which makes very strong assumptions
about which part of a spatial coordinate tuple is the x coordinate, and which is the y
coordinate. For this reason, spatial coordinates are always listed in the order (x, y, z, t)
and the row vectors for BASIS are defined consistent with that ordering.

Note that because the reverse process is performed on source grid meta-data, it is
necessary that the source grid meta-data have an invertible BASIS (i.e., V) and strictly
increasing values in the rows in the NONUNIFORM array (i.e., U). These requirements
do not apply for the destination grid.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

7

.

1000
0900
0040
0003



















=V

Special Cases

Step Sizes

Step sizes are closely related to the basis vectors described above. In fact, the
functionality that appears externally as step sizes is actually just a wrapper around the
basis vectors mechanism. Specifying step sizes actually produces a set of basis vectors
that form a diagonal matrix with the step sizes along the diagonal. For example,
specifying step size values (3, 4, 9, 1) is converted to the following basis vectors:

 BASIS 0: 3 0 0 0
 BASIS 1: 0 4 0 0 or mathematically,
 BASIS 2: 0 0 9 0
 BASIS 3: 0 0 0 1

Non-Uniform Grid Spacings

Most applications do not require non-uniform grid spacings. The Grid DataBlade treats
the absence of a specified non-uniform grid spacing array as being equivalent to a non-
uniform grid spacing array containing the values {0, 1, 2, 3, ..., Mi�1} where Mi is the
number of grid positions in the ith dimension. For instance, if we had not specified non-
uniform spacings along the second dimension (i.e., NONUNIFORM 1) when specifying
non-uniform spacings for a 2x3x4x5 grid with, for example,

 NONUNIFORM 0: 2 3
 NONUNIFORM 2: 0 2 9 11
 NONUNIFORM 3: 0 1 2 5 10

the missing non-uniform spacing (i.e., along the second dimension) would have been
interpreted as:

 NONUNIFORM 1: 0 1 2 (since the length of the second dimension is 3).

Also note that we can alternatively represent this mathematically by the following matrix:
(X�s are used to represent missing values as the three dimensions are of unequal lengths).

.

3
2
1
0

105210
11920

210
32

NONUNIFORM
NONUNIFORM
NONUNIFORM
NONUNIFORM

X
XX
XXX

→
→
→
→



















=U

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

Sampling Schemes

When data is extracted from a source grid, there may not be an exact match between grid
cell locations in the extracted grid and in the sampled grid. This may be caused by any
combination of the following:

• the start point of the extracted grid does not fall on a source grid cell location,
• the basis vectors of the two grids are not equal, or
• the SRIDs are different

When there is not an exact match between grid coordinates, as shown in the figure below,
one of two sampling methods is used, as described in the following sections.

Nearest-Neighbors

The simplest method is nearest-neighbors. Nearest-neighbors is conceptually equivalent
to snapping to the nearest grid point. In the example shown above, the extracted grid
value at X would be assigned the value 47 because X is closest to the grid cell containing
47.

N-linear Interpolation

The other method is N-linear interpolation. N-linear interpolation is a simple
generalization of bi-linear interpolation. In the 2-D case shown, one would first linearly
interpolate along one axis, as shown below:

and then linear
3 5 9

 X
47 60 111
3 9

 X
47 111
8

ly interpolate the interpolated values (5, 60) to give a value of 50 at X.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

9

Technical Models

Operating Model

Client Assembling vs. Server Assembling

In a traditional database environment, custom functionality is implemented purely on the
client side, resulting in �fat clients�. IDS release 9.x allows user-defined routines
(UDRs) in C, which provides a programmer much greater control over where
functionality resides. Data can be assembled/disassembled on either the client or the
server, or both, with attendant tradeoffs, as in the following table.

Pros to assembling on the client

• An individual client is easier to

debug and has fewer limitations
tied to issues of thread safety,
blocking, and legacy code.

• A client typically uses a single-
threaded model, allowing a wider
variety of system functions to be
safely used.

• Very large data objects can often be
handled analogously to file
processing operations, reducing the
memory needs (i.e., the entire data
object might not need to be in
memory at any point in time).

Pros to assembling on the server

• It is possible to take advantage of

server support for handling byte
ordering and other language or
platform issues.

• Centralization of the code reduces the
amount of logic linked into thinner
clients, shrinking the possibility of
inconsistencies between different
clients.

• Reduces network I/O by transmitting
just the query results to the client
with a minimum of synchronization
issues.

• Provides better data integrity through
concurrency control, transaction
management, backup, and recovery.

Which model to use depends a great deal on the size of the datatypes, the nature of the
custom functionality, and the nature of the data accesses.

Data Assembling Model

The Grid DataBlade uses the approach of assembling on the server side. This makes it
ideal for centralized databases that will be accessed from abroad, particularly through
slow connections or where data transfer speed is an important issue. The primary reason
for this is that only the requested results are moved across the client/server connection.
For example, extracting data at five grid points causes those five points to be pulled

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

10

across the connection, and does not include all the internal tiles that contain the five data
points. This poses a definite advantage when data is sub-sampled.

Datatypes

Underlying the Grid DataBlade are two basic opaque types:

• GRDValue: stores a 4D grid of user data along with the earlier mentioned meta-data

for Grids.
• GRDSpec: contains information needed to extract a specific dataset from a

GRDValue. Information found in the GRDSpec over-rides the meta-data found in the
GRDValue being extracted from. This may include none, some of, or all of the meta-
data stored in a grid in addition to the following properties:
- SRTEXT: A GRDSpec may specify SRTEXT instead of SRID. Specifying the

SRTEXT is more general than using the SRID since the latter provides for
specifying a range of valid values or coordinate precisions. Hence, the SRTEXT
is more likely to match the SRID of the GRDValue from which the data is to be
extracted

- INTERPOLATION: a specification, for each grid axis, of whether nearest-
neighbor or N-linear interpolation should be used.

Examples of GRDValue and GRDSpec are given in Appendix B.

Operation

Installation and Configuration

The Grid DataBlade may be installed and configured by the following steps:

1. Create a directory in $INFORMIXDIR/extend/ called Grid.1.0.0.0 with owner and

group Informix.
2. Copy the distribution files into that directory.
3. Remove group/other write permissions from the Grid.bld file if they are set.
4. Use bladeMgr to install the DataBlade in any desired databases.
5. Create a directory in /tmp called grid_temp. Change its permissions so that all users

(most importantly, the Informix server process) can write into that directory.

File-Oriented Interaction

The Grid DataBlade is also able to read and write a subset of NetCDF files directly on a
client machine, simply through the execution of the appropriate SQL statement. The
statements can be executed by a user-written client program (using JDBC, ODBC, or
ESQL/C) or simply by statements entered into any command line based database tool,

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

11

(such as the Informix-supplied dbaccess program). The subset of NetCDF supported is a
dialect called GIEF (Grid Import-Export Format). GIEF is described in more detail in
Appendix C.

Note: in order for the functions below to operate, there must be a server-writeable
directory on the host machine called /tmp/grid_temp.

Importing GIEF Files

A GIEF file is imported by executing the GRDFromGief routine. This routine has the
following definition:

 create procedure GRDFromGief(
 lvarchar, -- file name
 lvarchar, -- table name

);

The file name is a text string giving the path (either relative or absolute) of the file name
to be read. The file must be readable by the server. The table name must be the name of
an already existing table with the appropriate set of columns to handle the attributes in
the GIEF file.

Exporting GIEF Files

A GIEF file is exported by executing the GRDRowToGief routine. This routine has the
following definition.

 create function GRDRowToGief(
 lvarchar, -- file name
 lvarchar, -- table name
 integer, -- the rowid of the row of in the table.
 GRDSpec, -- specification of what to extract
) returns integer;

The file name must be the path of the file to be written. The table name is the name of the
table from which to extract the grid. The row id is the integer value of the row-id
�column�, a special column added by Informix automatically for most tables. The
GRDSpec indicates which fields and what portions of them to extract from the specified
grid.

When calling GRDRowToGief, it is simplest to express the GRDSpec as a text string and
then cast it to GRDSpec via the double-colon operator (this avoids having to link in any
special libraries). The text form of a GRDSpec is based on S-expressions and is provided
in Appendix D.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

12

Direct Object Interaction

Note: this section can be ignored by application writers who are only interested in GIEF
files for I/O.

Storing Data

For the Grid DataBlade, we have chosen the following model for storing data (as shown
in the diagram below):

float a[]

dimensions

GRDValueI
GRDValue as
var binary
(client order)

float b[]

GRDValue
(large object)

GRDValue
(server order) as
mi_lvarchar

GRDValue
(client order) as
mi_lvarchar

client
server

Data Storage Model

Notes:

1. A client program creates a data structure called a GRDValueI and populates it with

values from its local arrays. The GRDValueI is a straightforward C data structure
containing pointers to several variable length arrays.

2. The client then converts the GRDValueI to a GRDValue stored inside a var binary.
The GRDValue is an alternate representation of the GRDValueI, one in which all the
data exists in a contiguous area of memory and does not contain any pointers. A var
binary is a variable length binary structure used to hold variable length binary data.

3. The ESQL/C API is used to ship the var binary data from client to the server, which
repacks the var binary structure as an mi_lvarchar structure.

4. The server produces a new version of the GRDValue that has the server�s byte order.
5. A GRDValue assign support function causes the GRDValue to be stored as a small

object containing a smart blob.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

13

Modifying Data

Modifying a GRDValue is identical to inserting a GRDValue into a table except for the
small detail that there is one GRDValue being modified, and another GRDValue serving
as the source of the modification data. The actual modification is done with a simple
update statement. See the SQL API GRDUpdate for more details.

float a[]

dimensions

GRDValueI
GRDValue as
var binary
(client order)

float b[]

Existing
GRDValue
(large object)

GRDValue
(server order) as
mi_lvarchar

GRDValue
(client order) as
mi_lvarchar

client
server

Data Storage Model

GRDUpdate

It should be noted that once a GRDValue has been stored in a database, only its grid
values can be modified, not its meta-data. For instance, you cannot change the
GRDValue�s start point, number of dimensions, the number of samples in any dimension,
the number or type of the fields.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

14

Extracting Data

To extract data, a similar model is used (as shown in the diagram below):

dimensions GRDSpecI
GRDSpec
(client order) as
var binary

GRDValue
(large object) GRDSpec

(server order)
GRDSpec
(client order)
as mi_lvarchar

client
server

GRDValueIGRDExtract

GRDValueI
(large object)

GRDValue
(server order)

GRDValue
(client order)
as mi_lvarchar

server
client

GRDValue
(client order)
as var binary

GRDValueI

float a[]

float b[]

GRDSpecI

Data Extraction Model

Notes:

1. A GRDSpecI data structure is created and populated by a client application. Like the

GRDValueI, the GRDSpecI is a straightforward C data structure with pointers to
handle variable length components.

2. The GRDSpecI is converted to a GRDSpec (an alternate representation that uses a
contiguous block of memory and no pointers).

3. Through the ESQL/C API, the GRDSpec gets passed to the server, which constructs a
new version with the server�s byte order.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

15

4. The GRDExtract UDR on the server gets called with the GRDSpec and a GRDValue
to extract from.

5. Internally, the GRDExtract UDR unpacks the GRDSpec into a GRDSpecI, the header
of the GRDValue into a GRDValueI, and builds a new GRDValueI, converts the new
GRDValueI into a GRDValue, and returns the GRDValue.

6. The server computes a new GRDValue that has the client�s byte order.
7. The client program receives the GRDValue from the server, unpacks it into a

GRDValueI, and copies the contained data into local arrays.

Application Programming Interface (API)

SQL API Library

The following SQL API is intended to be used in the course of developing applications.
The SQL user-defined routines (UDRs) below deal with storing data into a database and
extracting subsets of that data. The SQL API is meant to be used in conjunction with the
C API or the Java API, which deal with the datatypes used for application programming.

Examining a GRDValue

function GRDResolution(GRDValue,integer) returns double precision: Returns the
resolution along one of the grid dimensions, where the second argument is the dimension
number (1-4). The function returns the distance between consecutive grid points along
that dimension's axis. The values along a grid axis that crosses spatial and non-spatial
coordinates is, of course, rather meaningless.

function GRDSrid(GRDValue) returns integer: Returns the SRID of the projection
system the GRDValue is in. Given the SRID, the spatial reference text can be retrieved
from the spatial_references table.

function GRDToGeodetic(GRDValue) returns lvarchar: returns the text for a
GeoPolygon, GeoLineseg, or GeoPoint that surrounds the Grid, depending on 2D
dimensionality of the grid. The text can then be cast to a GeoObject, and in practice just
about all the grids can be cast to a GeoPolygon. This function is present to support
geospatial indexing.

function GRDStartPoint(GRDValue) returns lvarchar: this function returns the start
point (i.e., translation) of a grid as a text string of space separated values.

Modifying a GRDValue

function GRDExtend(original GRDValue, sexpr lvarchar) returns GRDValue: this
function is used to clone a GRDValue while enlarging some of its dimensions. The sexpr

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

16

is a text string containing an S-expression. Currently, the only terms allowed in sexpr are
a final_size term. Any of the below are valid values for sexpr:
 �(final_size 100 100 1 1)�
 �((final_size 1 1 100 100))�
 �()�
The final_size term allows a GRDValue of a particular size to made into grid of larger
dimensions. The size of the dimension in the new grid is the larger of the `suggested size�
and the original size. This means that the first expression above would expand the first
and second dimensions of a grid to 100 and 100 while leaving the third and fourth
dimension unchanged. The second expression would expand the third and fourth
dimensions while leaving the first two dimensions unchanged.

There is one constraint on this function (besides the dimensions being positive): The data
in the original grid must occupy a contiguous region of blob space in the returned grid.
The rules that preserve this constraint are:
• size[i] cannot be expanded if i-t >= 1 and has a value > 1 for any t >= 1.
• size[i] cannot be expanded if i+t <= 4 and size[i+t] > 1 and size[i+t] is going to be

expanded for any t >= 1.

function GRDUpdate(original GRDValue, mods GRDValue) returns GRDValue:
this UDR modifies the first GRDValue (original) to add the new information contained in
the second GRDValue (mods).

GRDUpdate is always called implicitly, by executing the update statement, in the form:

update myTableA set myColumnA = some_grdvalue_expression
where some_column_name = some_value ;

There are a number of constraints on the two GRDValues:
• mods and original must have the same SRID and the same set of basis vectors.
• mods can only contain fields whose name and type match those fields in original.
• for any dimension that does not have a nonuniform dimension mods data must fit

entirely inside original, before grid wrap-around is considered.
• for any dimension that has a nonuniform dimension, the positions in the mods data

must either match those in original, or be greater than the last entry so that the mods
dimension positions can be stacked after the original positions for that dimension.

• the data elements in mods must occupy a contiguous region of blob space in original.
This is to limit the number of log entries generated. The following sets of dimensions
(one set per row of the table) are accepted:

mods size[0] mods size[1] mods size[2] mods size[3]
<= original size[0] = original size[1] = original size[2] = original size[3]
1 <= original size[1] = original size[2] = original size[3]
1 1 <= original size[2] = original size[3]
1 1 1 = original size[3]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

17

Extracting a GRDValue

function GRDExtract(source GRDValue, spec GRDSpec) returns GRDValue: this
UDR creates and returns a new GRDValue that contains information taken from the
source GRDValue parameter in regions specified by the GRDSpec parameter, in the
projection specified by the SRID parameter.

This UDR will usually be called from client applications to extract data, in the following
form. Note: the terms preceded by colons represent host variables in ESQL/C programs.

select GRDExtract(myColumn, :myGRDSpec)
from myGridTable where GRDId(origValue) = :myTargetId;

function GRDExtract2Pass(source GRDValue, spec GRDSpec) returns GRDValue:
this UDR has identical semantics to GRDExtract but a different performance profile.
Rather than fetching tiles from a source grid as needed (as GRDExtract does), it first
computes which tiles it will need, reads the tiles in the order that they are found in the
GRDValue, and then builds the new GRDValue. With the current implementation, this
doubles the amount of CPU time required but can substantially reduce the disk I/O time,
since:

• the disk�s track head seeks in only one direction (not back and forth as it would for

some extractions);
• the disk is used for a shorter time frame per extraction, decreasing the likelihood that

simultaneous queries will interfere with each other;
• fewer disk reads are performed, as tiles that are adjacent on the disk can be read in a

single disk read operation.

The exact nature of performance speed-up (or slow-down as the case may be) depends
heavily on the respective speeds of the processors versus the hard-drives, the
appropriateness of the tile sizes, and the amount of work involved in the extract. Faster
processors, slower hard-drives, and extracting data in the same projection as it was stored
tend to give GRDExtract2Pass an advantage over GRDExtract. A general rule of thumb
is that if the CPU utilization is less than 35% when using GRDExtract, then
GRDExtract2Pass is likely to give greater performance.

Additional Support Functions

function GRDTrim(blankPaddedText lvarchar) returns lvarchar: this function is
capable of trimming white space (preceding and following) from a text string. The
standard SQL trim function does not operate on the lvarchar data type and is limited to

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

18

strings of up to 256 characters long. This function is useful when trying to compare a
literal string to the srtext entry of the spatial_references table.

procedure GRDGenSrid(srtext lvarchar): this procedure generates an entry in the
spatial_references table for a particular instance of spatial reference text, if that entry has
not already been created. It is occasionally needed before running GRDRowToGief3.
It establishes its own transaction, so it must not be run from inside a transaction. The
srtext may have (@) signs in place of embedded double quotes, following the convention
for srtext in S-expressions.

function GRDIsWholeSphere(grid GRDValue) returns boolean: determines whether
a grid represents the entire sphere or not. Currently, this function only handles
geographical coordinate systems (i.e., lat/long); it will always return false for a projected
coordinate system.

function GRDSecsToTime(timeInSeconds integer) returns lvarchar: returns the
textual representation of the broken down time in datetime format (year to seconds)
represented by the integer time in seconds. This is useful in formulating geodetic time
queries.

C API Library

The following C API is intended to be used by ESQL/C application developers in the
course of developing applications. It is meant to be used in conjunction with the SQL
API in the preceding section.

Notes:
• The C API occasionally uses mi_integer and other mi_types, which are used to

guarantee the same number of bits on different architectures. These types are defined
in the Informix include file mitypes.h.

• Functions for creating and viewing the contents of a GRDValueI, creating a
GRDSpecI, converting between a GRDValueI and a GRDValue, and converting a
GRDSpecI to a GRDSpec are provided and described in this section. Functions for
viewing the contents of a GRDSpecI and converting a GRDSpec to a GRDSpecI are
available in the C API library but are not described here, since they have no role in
writing client applications.

3 Data can only be projected to mapping projections described by the spatial_references table. These
mapping projections can only be added while inside a transaction. A transaction cannot be started while
executing a select statement. Most uses of the GRDRowToGief function are done within a select
statement. This prevents the GRDRowToGief function from being able to add elements to the
spatial_references table itself.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

19

Types and Constants:

#define maxGrdDIMENSIONS (4)
#define maxGrdFIELDS (10)

typedef enum {
 grdFieldUNSET = 0, /* no value set */
 grdFieldINT1, /* 1 byte signed integer */
 grdFieldINT2, /* 2 byte signed integer */
 grdFieldINT4, /* 4 byte signed integer */
 grdFieldINT8, /* 8 byte signed integer */
 grdFieldUINT1, /* 1 byte unsigned integer */
 grdFieldUINT2, /* 2 byte unsigned integer */
 grdFieldUINT4, /* 4 byte unsigned integer */
 grdFieldUINT8, /* 8 byte unsigned integer */
 grdFieldREAL4, /* 4 byte float */
 grdFieldREAL8, /* 8 byte float */
 grdFieldRGBA, /* 4 1 byte values */
 grdFieldPOLAR4, /* 2D vector as theta/r 4 byte float pairs */
 grdFieldPOLAR8, /* 2D vector as theta/r 8 byte float pairs */
 grdFieldSPHERICAL4, /* 3D vector as theta/sigma/r 4 byte triplets */
 grdFieldSPHERICAL8, /* 3D vector as theta/sigma/r 8 byte triplets */
 grdFieldMustBeLast /* number of field specifications */
} GRDFieldType;

Creating and Setting a GRDValueI

The GRDValueI is an intermediate structure used to construct the GRDValue. The
following functions are used to construct the GRDValueI.

/*
 * Name: GRDValueINew
 * Purpose: Allocate a new GRDValueI structure
 * Returns: the new structure.
 */
GRDValueI *GRDValueINew();

/*
 * Name: GRDValueISetDims
 * Purpose: Establishes the number of dimensions held by the GRDValueI
 * Arguments:
 * p: the GRDValueI
 * numDims: the number of dimensions involved.
 * numSamples: number of samples in each dimension
 * axisIds: name of each dimensional axis

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

20

 * Comments: you must establish the dimensions before defining fields
 * since memory allocations for the fields depend on the dimensions.
 */
void GRDValueISetDims(GRDValueI *p, mi_integer numDims, mi_integer
numSamples[], mi_integer axisIds[]);

/*
 * Name: GRDValueISetStartPt
 * Purpose: set the location of the first element stored in the grid.
 * Arguments:
 * p: the GRDValueI
 * startPt: an array of doubles
 * Comment: the number of dimensions must be set first.
 */
void GRDValueISetStartPt(GRDValueI *p, mi_double_precision startPt[]);

/*
 * Name: GRDValueISetBasisVector
 * Purpose: set the basis vector for the ith dimension.
 * Arguments:
 * p: the GRDValueI
 * dimNum: the index of the dimension being set
 * BasisVector: vector defining the orientation of the dimension
 * relative to the native coordinate system.
 */
void GRDValueISetBasisVector(GRDValueI *p, mi_integer dimNum,
mi_double_precision BasisVector[]);

/*
 * Name: GRDValueISetAligned
 * Purpose: sets the grid step vectors for dimensions for the simple
 * case that the ith dimension is aligned along the ith
 * axis.
 * Arguments:
 * p: the GRDValueI
 * stepValues: the step value along each axes of the native
 * coordinate system.
 * Comments: this is an alternative to using GRDValueISetIthDim.
 */
void GRDValueISetAligned(GRDValueI *p, mi_double_precision stepValues[]);

/*
 * Name: GRDValueISetNonUniform
 * Purpose: define a nonuniformly sampled dimension
 * Arguments:
 * p: the GRDValueI

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

21

 * dimNum: the number of the dimension that should be nonuniform
 * samplePoints: where to sample along the dimNumth dimension.
 * These values represent scaling factors applied to the dimensions
 * stepping vector.
 */
void GRDValueISetNonUniform(GRDValueI *p, mi_integer dimNum,
mi_double_precision samplePoints[]);

/*
 * Name: GRDValueISetNumFields
 * Purpose: sets the number of data fields that can be stored.
 * Arguments:
 * p: the GRDValueI
 * numFields: the number of fields p should have.
 */
void GRDValueISetNumFields(GRDValueI *p, mi_integer numFields);

/*
 * Name: GRDValueISetFieldType
 * Purpose: sets the parameters describing one of the fields
 * Arguments:
 * p: the GRDValueI
 * fieldNum: which field to set (a value between 0 and numDataFields -1)
 * fieldId: an integer id to be assigned to the field
 * fieldType: the datatype of the field�s elements (e.g., grdFieldREAL4).
 */
void GRDValueISetFieldType(GRDValueI *p, mi_integer fieldNum, mi_integer fieldId,
GRDFieldType fieldType);

/*
 * Name: GRDValueIAppendFieldType
 * Purpose: sets the parameters describing the next available field.
 * Returns: the index of the field.
 * Arguments:
 * p: the GRDValueI
 * fieldId: an integer id to be assigned to the field
 * fieldType: the datatype of the field�s elements (e.g., grdFieldREAL4).
 * Comments: this is an alternative to using GRDValueISetNumFields and
 * GRDValueISetFieldType, useful when you do not know the number of
 * fields in advance and consecutive ordering of the fields is sufficient.
 */
mi_integer GRDValueIAppendField(GRDValueI *p, mi_integer fieldId, GRDFieldType
fieldType);

/*
 * Name: GRDValueISetAlignTile

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

22

 * Purpose: causes the tiles to be aligned on disk page boundaries
 * when stored in the database. The default is no alignment.
 * Arguments:
 * p: the GRDValueI
 */
void GRDValueISetAlignTile(GRDValueI *p);

/*
 * Name: GRDValueISetAlignField
 * Purpose: causes the field components inside a tile to be aligned on
 * disk page boundaries when stored in the database. The default is
 * no alignment.
 * Arguments:
 * p: the GRDValueI
 * Comments: this results in more internal fragmentation than
 * using GRDValueISetAlignTile.
 */
void GRDValueISetAlignField(GRDValueI *p);

/*
 * Name: GRDCalcNumFieldEle
 * Purpose: computes the number of fields
 * Arguments:
 * p: the GRDValueI
 * Returns: the number of elements as long long (64-bit quantity)
 */
long long GRDCalcNumFieldEle(GRDValueI *p);

/*
 * Name: GRDValueISetValues
 * Purpose: transfer data from a source array to the GRDValueI,
 * Arguments:
 * p: the GRDValueI
 * fieldNum: index of the field being set (not the id)
 * data: point to the array of input data, assumed to match the
 * previously defined field type.
 * dataValid: an array of Boolean flags indicating whether a
 * particular element of �data� is valid (!0) or null (0).
 * startIndex: where in p to store the first element from �data�. If null,
 * then data is assumed to exactly fit the relevant field.
 * sourceDims: dimensions of the �data� array. This should non-null if and only if
 * startIndex is non-null.
 */
void GRDValueISetValues(GRDValueI *p, mi_integer fieldNum, void *data,
ElementSetFlag *dataValid, mi_integer startIndex[grdMaxDIMENSIONS], mi_integer
sourceDims[grdMaxDIMENSIONS]);

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

23

/*
 * Name: GRDValueISetTileSize
 * Purpose: set the sizes of the internal tiling.
 * Comment: tiling is an optimization issue. An appropriate tiling size
 * increases performance only.
 * Arguments:
 * p: the GRDValueI
 * sizes: the dimensions of a tile
 */
void GRDValueISetTileSize(GRDValueI *p, mi_integer sizes[]);

/*
 * Name: GRDValueISetSrid
 * Purpose: Sets the projection associated with the GRDValueI
 * Arguments:
 * p: the GRDValueI
* SRID: the spatial reference id.
 * Comments: it is an error to try to associate a projection
 * after data has already been stored or extracted.
 */
void GRDValueISetSrid(GRDValueI *p, mi_integer SRID);

/*
 * Name: GRDValueISetDimName
 * Purpose: sets the textual name of a field
 * Arguments:
 * p: the GRDValueI
 * dimNum: the index of the field to be given a name
 * dimName: the textual name.
 * Comments: a copy is made of dimName, the parameters doesn't
 * need to be preserved for the length of the object.
 */
void GRDValueISetDimName(GRDValueI *p, int dimNum, char *dimName);

/*
 * Name: GRDValueISetFieldName
 * Purpose: sets the textual name of a field
 * Arguments:
 * p: the GRDValueI
 * fieldNum: the index of the field to be given a name
 * fieldName: the textual name.
 * Comments: a copy is made of fieldName, the parameters doesn't
 * need to be preserved for the length of the object.
 */
void GRDValueISetFieldName(GRDValueI *p, int fieldNum, char *fieldName);

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

24

/*
 * Name: GRDValueISetWrap
 * Purpose: indicates that the grid wraps around in a particular dimension.
 * Arguments:
 * p: the GRDValueI
 * dimNum: dimension the wrapping applies to.
 */
void GRDValueISetWrap(GRDValueI *p, int dimNum);

Examining the Contents of a GRDValueI

/*
 * Name: GRDValueIGetValues
 * Purpose: transfer data from a source array to the GRDValueI,
 * Arguments:
 * p: the GRDValueI
 * fieldNum: index of the field being set (not the id)
 * data: point to the array of input data, assumed to match the
 * previously defined field type.
 * dataValid: an array of Boolean flags indicating whether a
 * particular element of �data� is valid (!0) or null (0).
 * startIndex: where in p to store the first element from �data�. If null,
 * then data is assumed to exactly fit the relevant field.
 * sourceDims: dimensions of the �data� array. This should non-null if and only if
 * startIndex is non-null.
 */
void GRDValueIGetValues(GRDValueI *p, mi_integer fieldNum, void *data,
ElementSetFlag *dataValid, mi_integer startIndex[grdMaxDIMENSIONS], mi_integer
sourceDims[grdMaxDIMENSIONS]);

/*
 * Name: GRDValueIGetSrid
 * Purpose: Gets the SRID associated with the GRDValueI
 * Arguments:
 * p: the GRDValueI
* Comments: it is an error to try to associate a projection
 * after data has already been stored or extracted.
 */
mi_integer GRDValueIGetSrid(GRDValueI *p);

/*
 * Name: GRDValueIGetStartPt
 * Purpose: get the location of the start point
 * Arguments:

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

25

 * p: the GRDValueI
 * Returns: an array of doubles
 * Comments: the array is part of �p�; it only lives as long as �p�
 * and should not be modified.
 */
mi_double_precision *GRDValueIGetStartPt(GRDValueI *p);

/*
 * Name: GRDValueIGetBasisVector
 * Purpose: get the basis vector for the ith dimension.
 * Arguments:
 * p: the GRDValueI
 * dimNum: the index of the dimension being set
 * Returns: the dimNumth basis vector (counting from 0)
 * Comments: this returns a pointer to an array inside of p. The array is only
 * valid during the life of �p� and it is illegal to modify the array.
 */
mi_double_precision *GRDValueIGetBasisVector(GRDValueI *p, mi_integer
dimNum);

/*
 * Name: GRDValueIGetNumDims
 * Purpose: Returns the number of dimensions held by the GRDValueI
 * Arguments:
 * p: the GRDValueI
 * Returns: the number of dimensions.
 */
mi_integer GRDValueIGetNumDims(GRDValueI *p);

/*
 * Name: GRDValueIGetDimensions
 * Purpose: returns the vector size of the grid
 * Arguments:
 * p: the GRDValueI
 * Returns: an array of mi_integer
 * Comments: the array returned is part of p. It should not be modified.
 */
mi_integer *GRDValueIGetDimensions(GRDValueI *p);

/*
 * Name: GRDValueIGetAxisIds
 * Purpose: returns an array of Axis Ids.
 * Arguments:
 * p: the GRDValueI
 * Returns: an array of mi_integer.
 * Comments: the array returned is part of p. It should not be modified.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

26

 */
mi_integer *GRDValueIGetAxisIds(GRDValueI *p);

/*
 * Name: GRDValueIGetNumFields
 * Purpose: returns the number of fields represented by a GRDValueI
 * Arguments:
 * p: the GRDValueI
 * Returns: the number of fields
 */
mi_integer GRDValueIGetNumFields(GRDValueI *p);

/*
 * Name: GRDValueIGetFieldId
 * Purpose: returns the id of a particular field in the GRDValueI
 * Arguments:
 * p: the GRDValueI
 * position: which field [0..GRDValueIGetNumFields(p)-1]
 * Returns: the field id.
 */
mi_integer GRDValueIGetFieldId(GRDValueI *p, mi_integer position);

/*
 * Name: GRDValueIGetFieldType
 * Purpose: returns the type of a particular field in the GRDValueI
 * Arguments:
 * p: the GRDValueI
 * position: which field [0..GRDValueIGetNumFields(p)-1]
 * Returns: the field type as a GRDFieldType enumeration
 */
GRDFieldType GRDValueIGetFieldType(GRDValueI *p, mi_integer position);

/*
 * Name: GRDValueIGetFieldData
 * Purpose: returns a pointer to the internal array used to
 * hold data for a particular field in a GRDValueI
 * Arguments:
 * p: the GRDValueI
 * position: which field [0..GRDValueIGetNumFields(p)-1]
 * Returns: a pointer to the internal array.
 * Comments: if the internal array has not been allocated yet,
 * this call causes it to be allocated. It is the caller�s responsibility
 * to ensure that their use of the array is consistent with its dimensions
 * and element type.
 */
void *GRDValueIGetFieldData(GRDValueI *p, mi_integer position);

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

27

/*
 * Name: GRDValueIGetFieldValid
 * Purpose: returns a pointer to the internal array used to
 * track which elements in a field are valid.
 * Arguments:
 * p: the GRDValueI
 * position: which field [0..GRDValueIGetNumFields(p)-1]
 * Returns: a pointer to the internal array.
 * Comments: if the internal array has not been allocated yet,
 * this call causes it to be allocated.
 */
unsigned char *GRDValueIGetFieldValid(GRDValueI *p, mi_integer position);

/*
 * Name: GRDValueIGetDimName
 * Purpose: fetches the name of a particular dimension
 * Arguments:
 * p: the GRDValueI
 * dimNum: the index of the field to be given a name
 * Returns: the dim name as a text string, or NULL if no name has been
 * assigned.
 * Comments: the text returned is property of the GRDValueI. Don't modify
 * or free it directly.
 */
char *GRDValueIGetDimName(GRDValueI *p, int dimNum);

/*
 * Name: GRDValueIGetFieldName
 * Purpose: fetches the name of a particular field
 * Arguments:
 * p: the GRDValueI
 * fieldNum: the index of the field to be given a name
 * Returns: the field name as a text string, or NULL if no name has been
 * assigned.
 * Comments: the text returned is property of the GRDValueI. Don't modify
 * or free it directly.
 */
char *GRDValueIGetFieldName(GRDValueI *p, int fieldNum);

/*
 * Name: GRDValueIDoesWrap
 * Purpose: determines is coordinate wrapping is enabled.
 * Arguments:
 * p: the GRDValueI
 * dim: the dimension

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

28

 * Returns: true if the grid wraps in the specified dimension
 */
int GRDValueIDoesWrap(GRDValueI *p, int dim);

Converting between a GRDValueI and a GRDValue (var binary) Type

In an ESQL/C application, the GRDValue is represented by the Informix var binary type.

/*
 * Name: GRDValueIToVarBinary
 * Purpose: Converts a GRDValueI to a GRDValue (inside a var binary type)
 * so that it can be used in ESQL/C calls.
 * Arguments:
 * p: the GRDValueI
 * Returns:
 * the new GRDValue as a var binary.
 */
var binary GRDValueIToVarBinary(GRDValueI *p);

/*
 * Name: VarBinaryToGRDValueI
 * Purpose: Converts a GRDValue (inside a var binary type) to a GRDValueI
 * so that it can be used in ESQL/C calls.
 * Arguments:
 * p: the GRDValue as a var binary.
 * Returns:
 * the new GRDValueI.
 */
GRDValueI *VarBinaryToGRDValueI(var binary p);

Creating and Setting a GRDSpecI Type

/*
 * Name: GRDValueINew
 * Purpose: Allocate a new GRDValueI structure
 * Returns: the new structure.
 */
GRDSpecI *GRDSpecINew();

/*
 * Name: GRDSpecISetDims
 * Purpose: Establishes the number of dimensions held by the GRDValueI
 * Arguments:
 * p: the GRDValueI

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

29

 * numDims: number of dimensions
 * numSamples: number of samples in each dimension
 * axisIds: name of each dimensional axis
*/
void GRDSpecISetDims(GRDSpecI *p, mi_integer numDims, mi_integer
numSamples[], mi_integer axisIds[]);

/*
 * Name: GRDSpecISetAligned
 * Purpose: sets the grid basis vectors for dimensions for the simple
 * case that the ith dimension is aligned along the ith
 * axis.
 * Arguments:
 * p: the GRDSpecI
 * stepValues: the step value along each axes of the native
 * coordinate system.
 * Comments: this is an alternative to using GRDValueISetIthDim.
 */
void GRDSpecISetAligned(GRDSpecI *p, mi_double_precision stepValues[]);

/*
 * Name: GRDSpecISetNonUniform
 * Purpose: define a nonuniformly sampled dimension
 * Arguments:
 * p: the GRDSpecI
 * dimNum: the number of the dimension that should be nonuniform
 * samplePoints: where to sample along the dimNumth dimension.
 * These values represent scaling factors applied to the dimensions
 * stepping vector.
 */
void GRDSpecISetNonUniform(GRDSpecI *p, mi_integer dimNum,
mi_double_precision samplePoints[]);

/*
 * Name: GRDSpecISetNumFields
 * Purpose: sets the number of data fields that can be stored.
 * Arguments:
 * p: the GRDSpecI
 * numFields: the number of fields p should have.
 */
void GRDSpecISetNumFields(GRDSpecI *p, mi_integer numFields);

/*
 * Name: GRDSpecISetFieldType
 * Purpose: sets the parameters describing one of the fields
 * Arguments:

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

30

 * p: the GRDSpecI
 * fieldNum: which field to set (a value between 0 and numDataFields -1)
 * fieldId: an integer id to be assigned to the field
 * fieldType: the datatype of the field�s elements (e.g., grdFieldREAL4).
 */
void GRDSpecISetFieldType(GRDSpecI *p, mi_integer fieldNum, mi_integer fieldId,
GRDFieldType fieldType);

/*
 * Name: GRDSpecIAppendFieldType
 * Purpose: sets the parameters describing the next available field. Returns
 * the index of the field.
 * Arguments:
 * p: the GRDSpecI
* fieldId: an integer id to be assigned to the field
 * fieldType: the datatype of the field�s elements (e.g., grdFieldREAL4).
 * Comments: this is an alternative to using GRDSpecISetNumFields and
 * GRDSpecISetFieldType, useful when you do not know the number of fields
 * in advance and consecutive ordering of the fields is sufficient.
 */
mi_integer GRDSpecIAppendField(GRDSpecI *p, mi_integer fieldId, GRDFieldType
fieldType);

/*
 * Name: GRDSpecISetInterpolation
 * Purpose: sets the interpolation flag for a particular dimension.
 * Arguments:
 * p: the spec
 * dim: which dimensions (0..grdMaxDIMENSIONS)
 * value: GRDInterpNEAREST or GRDInterpBILINEAR
 * Comments: the default is GRDInterpNEAREST.
 */
void GRDSpecISetInterpolation(GRDSpecI *p, mi_integer dim, mi_integer value);

/*
 * Name: GRDSpecIAddFieldName
 * Purpose: sets the textual name of a field
 * Arguments:
 * p: the GRDSpecI
 * fieldName: the textual name.
 * Comments: a copy is made of fieldName, the parameters doesn't
 * need to be preserved for the length of the object.
 */
void GRDSpecIAddFieldName(GRDSpecI *p, char *fieldName);

/*

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

31

 * Name: GRDSpecISetDimName
 * Purpose: sets the textual name of a field
 * Arguments:
 * p: the GRDSpecI
 * dimNum: the index of the field to be given a name
 * dimName: the textual name.
 * Comments: a copy is made of dimName, the parameters doesn't
 * need to be preserved for the length of the object.
 */
void GRDSpecISetDimName(GRDSpecI *p, int dimNum, char *dimName);

/*
 * Name: GRDSpecIDoesWrap
 * Purpose: determines if the coordinate system wraps in a particular dimension
 * Arguments:
 * p: the spec
 * dimNum: the number of the dimension [0..grdMaxDIMENSIONS)
 * Returns:
 * true if the dimensions wraps.
 */
int GRDSpecIDoesWrap(GRDSpecI *p, int dimNum);

/*
 * Name: GRDSpecISetSrText
 * Purpose: Sets the srtext of the spec.
 * Arguments:
 * p: the spec
 * srtext: the spatial reference text.
 */
void GRDSpecISetSrText(GRDSpecI *p, char *srtext);

/*
 * Name: GRDSpecISetWrap
 * Purpose: sets coordinate wrapping for a particular dimension.
 * Arguments:
 * p: the spec
 * dimNum: the dimension
 * minVal: low end of the range
 * maxVal: high end of the range
 */
void GRSpecISetWrap(GRDSpecI *p, int dimNum, double minVal, double maxVal);

Converting between a GRDSpecI and a GRDSpec (var binary) Type

The GRDSpecI is represented on a client by a var binary.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

32

/*
 * Name: GRDSpecIToVarBinary
 * Purpose: Converts a GRDSpecI to a GRDSpec inside in a var binary.
 * Arguments:
 * p: the GRDSpecI
 * Returns the var binary.
 */
var binary GRDSpecIToVarBinary(GRDSpecI *p);

Example: Inserting Data Using ESQL/C

The following ESQL/C program inserts a small grid into the gridtesttable in a database
called gridtest. It makes reference to some error checking procedures that are ESQL/C
specific and have nothing to do with the Grid DataBlade. These procedures can be found
in the demoCode/esqlc directory along with the program below.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <grd.h>
#include <grdError.h>
#include <grdValueI.h>
#include <grdStorage.h>
#include <grdTransfer.h>
#include <mi.h>

EXEC SQL include sqltypes;
EXEC SQL include exp_chk.ec;

GRDValueI *BuildGRDValue()
{

static double startPt[] = { 0, 0, 0, 0 };
static mi_integer axisIds[] = { 0, 1, 2, 0 };
static mi_integer numSamples[] = { 4, 8, 8, 0};
int i, j, k;
static mi_integer tileSizes[grdMaxDIMENSIONS] = { 2, 4, 4, 1};
int *dataP;
GRDValueI *theValue;
theValue = GRDValueINew();

GRDValueISetDims(theValue, sizeof(startPt)/sizeof(startPt[0]),
numSamples, axisIds);

GRDValueISetStartPt(theValue, startPt);
GRDValueISetFinalDimensions(theValue, numSamples);
GRDValueISetSrid(theValue, 0);
GRDValueISetTileSize(theValue, tileSizes);
GRDValueIDisableMissing(theValue);

GRDValueIAppendField(theValue, 5, grdFieldINT4);
dataP = (int *)GRDValueIGetFieldData(theValue, 0);
for(i = 0; i < numSamples[0]; i++) {

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

33

for(j = 0; j < numSamples[1]; j++) {
for(k = 0; k < numSamples[2]; k++) {

for(m = 0; m < numSamples[3]; m++) {
*dataP = i * 100*100 + j * 100 + k+1;
dataP++;

}
}

}
}
return theValue;

}

void LoadGridToTable(GRDValueI* p)
{

EXEC SQL BEGIN DECLARE SECTION;
var binary "GRDValue" gridVar;
EXEC SQL END DECLARE SECTION;
EXEC SQL whenever sqlerror CALL ignore206;
EXEC SQL connect to 'gridtest' ;
gridVar = GRDValueIToVarBinary(p);
EXEC SQL delete from gridTestTable;
EXEC SQL insert into gridtesttable values(:gridVar);
EXEC SQL disconnect current;

}

int main()
{

GRDValueI *theValue;
theValue = BuildGRDValue();
LoadGridToTable(theValue);
exit(0);

}

Example: Extracting Data Using ESQL/C

The following ESQL/C program extracts a small grid from gridtesttable in a database
called gridtest. It makes reference to some error checking procedures that are ESQL/C
specific and have nothing to do with the Grid DataBlade. These procedures can be found
in the demoCode/esqlc directory along with the program below.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include <malloc.h>
#include <mi.h>
#include <grd.h>
#include <grdStorage.h>
#include <grdInterpSupport.h>
#include <grdValueI.h>

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

34

EXEC SQL include exp_chk.ec;

GRDValueI *
UnloadGridFromTable(GRDSpecI *specValue, int srid) {

GRDValueI *result;
EXEC SQL BEGIN DECLARE SECTION;

int outSrid;
var binary "grdvalue" gridVar;
var binary "grdspec" theSpec;

EXEC SQL END DECLARE SECTION;
EXEC SQL whenever sqlerror CALL ignore206;
EXEC SQL connect to 'gridtest' ;

outSrid = srid;
theSpec = GRDSpecIToVarBinary(specValue);

if(ifx_var_alloc(&gridVar, 10)) {
GRDUserError("ifx_var_alloc failed");

}
if(ifx_var_flag(&gridVar, 1)) {

GRDUserError("ifx_var_flag failed");
}

EXEC SQL select grdextract2pass(a, :theSpec)
into :gridVar from gridtesttable;

result = GRDValueIFromVarBinary(gridVar);
ifx_var_dealloc(gridVar);
ifx_var_dealloc(theSpec);

EXEC SQL disconnect current;
return result;

}

/*
* query user for extraction values
*/

GRDSpecI *BuildGRDSpec()
{

GRDSpecI *theSpec;
static double startPt[] = { 0,0,0,0};
static mi_integer sampleSize[] = { 1, 1, 5, 5};

theSpec = GRDSpecINew();
GRDSpecISetNumFields(theSpec, 1);
GRDSpecISetFieldId(theSpec, 0, 5);

GRDSpecISetDims(theSpec, 4, sampleSize, NULL);
GRDSpecISetStartPt(theSpec, startPt);
return theSpec;

}

static void DumpGrid(GRDValueI *extract)
{

int i, j, k, m;

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

35

int numDims;
mi_integer *numSamples;
int *data;

numDims = GRDValueIGetNumDims(extract);
numSamples = GRDValueIGetDimensions(extract);
data = GRDValueIGetFieldData(extract, 0);
for(i = 0; i < numSamples[0]; i++) {

printf("==section %d===\n", i);
for(j = 0; j < numSamples[1]; j++) {

for(k = 0; k < numSamples[2]; k++) {
for(m = 0; m < numSamples[3]; m++) {

printf("%9d", *data);
data++;

}
printf("\n");

}
}

}
}

int main()
{

GRDSpecI *theSpec;
GRDValueI *extract;
int outSrid = -1;
GRDErrSource(argv[0]);
theSpec = BuildGRDSpec();
extract = UnloadGridFromTable(theSpec, outSrid);
DumpGrid(extract);
exit(0);

}

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

36

Java Client API

Class Descriptions

The Java client API is a set of classes that are used by Java client applications to store
and extract grids from the Informix Server. They are found in the package
com.barrodale.grid supplied with the Grid DataBlade. The Java API may be used in
conjunction with the SQL API and in place of or in conjunction with the C API.

The classes fall under four categories:

• GRDType Mirrors: The GRDValue, and GRDSpec Java classes mirror the SQL

Types of the same name. AbstractValue is a superclass that embodies the common
aspects of GRDValue and GRDSpec.

• Element Arrays: Int1Field, Int2Field, Int4Field, Real4Field, Real8Field and
Uint1Field implement multi-dimensional arrays of different primitive types.
AbstractDataField is the superclass for these.

• Support Classes: GRDSqlIn, GRDSqlOut and GRDSupport provide support for the
other classes. These classes are never used by applications directly.

• Exceptions: Six additional exception classes are defined by the Grid DataBlade.
These are unchecked exceptions and are thrown when a programmer error is
encountered. The exceptions are: BadArgumentException, BadOrderException,
IncompatibleDimensionsException, InconsistentArityException,
NullArgumentException, and UnknownArityException. The usual JDBC exceptions
are also thrown when an SQL is encountered.

More detail about these classes can be found in the associated Javadocs.

Example: Inserting Data Using Java

The following sample class inserts a 2x3x2x1 grid of ascending byte values to field index
99 of the myField field of a table called myTable. It also includes driver-loading code.

import com.informix.jdbc.*;
import com.barrodale.grid.*;
import java.sql.*;
import java.io.*;
import java.lang.*;

public class TestInsert {

public static void main(String[] arg)
{

try
{

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

37

// load driver and connect to the database
Driver IfmxDrv = (Driver)

Class.forName("com.informix.jdbc.IfxDriver").newInstance();
String url = "jjdbc:informix-sqli://myhost:myport/mydatabase:" +

"informixserver=ifmxdba;user=myusername;password=mypass";
Connection con = DriverManager.getConnection(url);

// registering classes with the type maps
java.util.Map customtypemap = con.getTypeMap();
if (customtypemap == null) { System.exit(-1); }
customtypemap.put("grdvalue",

Class.forName("com.barrodale.grid.GRDValue"));
customtypemap.put("grdspec",

Class.forName("com.barrodale.grid.GRDSpec"));

// create the 2x5 data array
byte[] dataArray = new byte[] {0,1,2,3,4,5,6,7,8,9,10,11};
int xSize=2; int ySize=3; int zSize=2, tSize = 1;

// create a GRDValue object containing the data
int[] fieldDim = {xSize, ySize, zSize, tSize};
Int1Field dataField = new Int1Field(99, fieldDim);

int x=0; int y=0; int z=0; int z = 0int i=0;
while (i < xSize*ySize*zSize*tSize)
{

byte dataPiece = dataArray[i++];
int[] pos = new int[] {x, y, z};
dataField.setElement(pos, dataPiece);
x++;
if (x >= xSize) { x = 0; y++; }
if (y >= ySize) { y = 0; z++; }
if (z >= zSize) { z = 0; t++; }

}

GRDValue gValue = new GRDValue();
gValue.setNumSamples(fieldDim);
gValue.addField(dataField);
gValue.setStartPt(new double [] { 0, 0, 0, 0 });

// insert the GRDValue object into the database
String pstmtSQL = "INSERT INTO myTable (myField) VALUES(?)";
PreparedStatement pstmt = con.prepareStatement(pstmtSQL);
pstmt.setObject (1, gValue, java.sql.Types.LONGVARBINARY);
pstmt.executeUpdate();

}
catch (Exception e)
{

System.out.println("Error: " + e.getMessage());
e.printStackTrace();
System.exit(-1);

}
System.out.println("Insert Successful");

}
}

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

38

Example: Extracting Data Using Java

The following sample class extracts the entire grid of data that was inserted in the
example above. The dimensions are set to {2,3,2,1} and start point is set to {0,0,0,0}.
The type of interpolation used is linear interpolation. This example includes loading the
driver, connecting to the database and registering three classes with the type map.

import com.informix.jdbc.*;
import com.barrodale.grid.*;
import java.sql.*;
import java.io.*;
import java.lang.*;

public class TestExtract {

public static void main(String[] arg)
{
try
{

// load the driver and connect to the server
Driver IfmxDrv = (Driver)

Class.forName("com.informix.jdbc.IfxDriver").newInstance();
String url = "jjdbc:informix-sqli://myhost:myport/mydatabase:" +

"informixserver=ifmxdba;user=myusername;password=mypass";
Connection con = DriverManager.getConnection(url);

// register classes with the type maps
java.util.Map customtypemap = con.getTypeMap();
if (customtypemap == null) System.exit(-1);
customtypemap.put("grdvalue",

Class.forName("com.barrodale.grid.GRDValue"));
customtypemap.put("grdspec",

Class.forName("com.barrodale.grid.GRDSpec"));

// extract the GRDValue object from the database
int xSize=2; int ySize=3; int zSize=2, tSize = 1;
GRDSpec gSpec = new GRDSpec();
gSpec.setNumSamples(new int[] {xSize, ySize, zSize, tSize});
gSpec.setFieldIds(new int[] {99});
gSpec.setIdentityBasis();
gSpec.setStartPt(new double[] {0,0,0,0});

String pstmtSQL = "SELECT GRDExtract(myField, ?) from myTable";
PreparedStatement pstmt = con.prepareStatement(pstmtSQL);
pstmt.setObject(1, gSpec);
ResultSet rs = pstmt.executeQuery();

rs.next();
GRDValue gValue = (GRDValue)rs.getObject(1);
Int1Field dataField = (Int1Field)gValue.getFieldByPosition(0);
byte[] dataArray = (byte[])dataField.getElements();

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

39

// display array contents
int i=0;
while (i < dataArray.length && i < 100)
{

System.out.print(dataArray[i]+", ");
if (i%10 == 9) System.out.println();
i++;

}

}
catch (Exception e)
{

System.out.println("\nError: " + e.getMessage());
e.printStackTrace();
System.exit(-1);

}
System.out.println("\nExtract Successful");

}
}

Appendix A: Examples of Grid-Spatial Conversion

In the following examples, the data stored in the 2-D source grid is the sequence
1, 2, 3, ... , 28. The grid dimensions are 4x7x1x1 (4 in the x dimension, 7 in the y
dimension) as shown below:

7 14 21 28
6 13 20 27
5 12 19 26
4 11 18 25
3 10 17 24
2 9 16 23
1 8 15 22

Note that the first element is at the bottom left and that grid positions increase vertically,
to be consistent with spatial coordinates, which are usually represented this way.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

40

Default Grid Meta-Data

The default grid meta-data is as follows:

STARTPOINT: 0 0 0 0
BASIS 0: 1 0 0 0
BASIS 1: 0 1 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1

The interpretation of this grid is:

a value of 1 at location (0, 0, 0, 0)
a value of 2 at location (0, 1, 0, 0)
a value of 3 at location (0, 2, 0, 0)
...
a value of 8 at location (1, 0, 0, 0)
...
a value of 15 at location (2, 0, 0, 0)
...
a value of 28 at location (3, 6, 0, 0)

X

Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

41

Translated Grid

By setting the start point, we translate the spatial coordinates of the grid points. The
following meta-data offsets the x coordinates by 100 and the y coordinates by 200:

STARTPOINT: 100 200 0 0
BASIS 0: 1 0 0 0
BASIS 1: 0 1 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1

The interpretation of this grid is:

a value of 1 at location (100, 200, 0, 0)
a value of 2 at location (100, 201, 0, 0)
a value of 3 at location (100, 202, 0, 0)
...
a value of 8 at location (101, 200, 0, 0)
...
a value of 15 at location (102, 200, 0, 0)
...
a value of 28 at location (103, 206, 0, 0)

X

Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

42

Scaled Grid

A scaling of 1.2 along the x coordinates (the first dimension) and 3.5 along the y
coordinates can be done by setting the diagonals of the BASIS vector 1.2 and 3.5,
respectively. The new version is:

STARTPOINT: 0 0 0 0
BASIS 0: 1.2 0 0 0
BASIS 1: 0 3.5 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1

The interpretation of this grid is:

a value of 1 at location (0, 0, 0, 0)
a value of 2 at location (0, 3.5, 0, 0)
a value of 3 at location (0, 7, 0, 0)
...
a value of 8 at location (1.2, 0, 0, 0)
...
a value of 15 at location (2.4, 0, 0, 0)
...
a value of 28 at location (3.6, 21, 0, 0)

X

Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

43

Column Major Scan Order

The x and y coordinates can be flipped by swapping the basis vectors. The new version
is:

STARTPOINT: 0 0 0 0
BASIS 0: 0 1.2 0 0
BASIS 1: 3.5 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1

The interpretation of this grid is:

 a value of 1 at location (0, 0, 0, 0)
a value of 2 at location (3.5, 0, 0, 0)
a value of 3 at location (7, 0, 0, 0)
...
a value of 8 at location (0, 1.2, 0, 0)
...
a value of 15 at location (0, 2.4, 0, 0)
...
a value of 28 at location (21, 3.6, 0, 0)

X

Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

44

Scan Direction

By adjusting the STARTPOINT and the direction of the BASIS vectors, different scan
directions can be achieved.

STARTPOINT: 3 6 0 0
BASIS 0: �1 0 0 0
BASIS 1: 0 �1 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1

The interpretation of this grid is:

 a value of 1 at location (3, 6, 0, 0)
a value of 2 at location (3, 5, 0, 0)
a value of 3 at location (3, 4, 0, 0)
...
a value of 8 at location (2, 6, 0, 0)
...
a value of 15 at location (1, 6, 0, 0)
...
a value of 28 at location (0, 0, 0, 0)

X

Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

45

Rotation

Rotation can be done using setting the BASIS vectors to the appropriate sine and cosine
values. The example below rotates 30 degrees from the positive side of dimension 0, to
the positive side of dimension 1 (a counterclockwise rotation if dimension 0 is mapped to
x, and dimension 1 is mapped to y, and plotted).

STARTPOINT: 0 0 0 0
BASIS 0: 0.866 �0.5 0 0
BASIS 1: 0.5 0.866 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1

The interpretation of this grid is:

 a value of 1 at location (0, 0, 0, 0)
a value of 2 at location (�0.5, 0.866, 0, 0)
a value of 3 at location (�1.0, 1.732, 0, 0)
...
a value of 8 at location (0.866, 0.5, 0, 0)
...
a value of 15 at location (1.732, 1.0, 0, 0)
...
a value of 28 at location (�0.402, 6.696, 0, 0)

X

Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

46

Non-Uniform Grid Spacing

The key point of non-uniform grid spacing is that (in the absence of distorting BASIS
vectors) the resulting region remains rectilinear since each axis is stretched
independently.

STARTPOINT: 0 0 0 0
BASIS 0: 1 0 0 0
BASIS 1: 0 1 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1
NONUNIFORM 0: 0 1 5 10
NONUNIFORM 1: 0 3 4 5 9 10 12

The interpretation of this grid is:

a value of 1 at location (0, 0, 0, 0)
a value of 2 at location (0, 3, 0, 0)
a value of 3 at location (0, 4, 0, 0)
...
a value of 8 at location (1, 0, 0, 0)
...
a value of 15 at location (5, 0, 0, 0)
...
a value of 28 at location (10, 12, 0, 0)

X

Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

47

Combining Non-Uniform Grid Spacing with Rotation

The key to combining non-uniform grid spacing with BASIS vector transformations
(other than the identity) is that non-uniform spacing is processed before the BASIS vector
transformations. Among other effects, this allows data be extracted at arbitrary points
along a line. The following meta-data combines the earlier rotation with the above grid
spacing.

STARTPOINT: 0 0 0 0
BASIS 0: 0.866 �0.5 0 0
BASIS 1: 0.5 0.866 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1
NONUNIFORM 0: 0 1 5 10
NONUNIFORM 1: 0 3 4 5 9 10 12

The interpretation of this grid is:
a value of 1 at location (0, 0, 0, 0)
a value of 2 at location (�1.5, 2.598, 0, 0)
a value of 3 at location (�2.0, 3.464, 0, 0)
...
a value of 8 at location (0.866, 0.5, 0, 0)
...
a value of 15 at location (4.33, 2.5, 0, 0)
...
a value of 28 at location (2.66, 15.392, 0, 0)

X
Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

48

Combining Non-Uniform Grid Spacing with Rotation and Translation

The key point in combining other effects with translation is to remember that the
translation is the last step in the processing.

STARTPOINT: 100 200 0 0
BASIS 0: 0.866 �0.5 0 0
BASIS 1: 0.5 0.866 0 0
BASIS 2: 0 0 1 0
BASIS 3: 0 0 0 1
NONUNIFORM 0: 0 1 5 10
NONUNIFORM 1: 0 3 4 5 9 10 12

The interpretation of this grid is:

a value of 1 at location (100, 200, 0, 0)
a value of 2 at location (98.5, 202.598, 0, 0)
a value of 3 at location (98.0, 203.464, 0, 0)
...
a value of 8 at location (100.866, 200.5, 0, 0)
...
a value of 15 at location (104.33, 202.5, 0, 0)
...
a value of 28 at location (102.66, 215.392, 0, 0)

X
Y

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

49

Appendix B: Examples of GRDValue and GRDSpec

Original Grid Base Location and Sampling Locations

In the 2D grid diagram below, filled circles represent sampling points where there was
data for the WindDirId field, while hollow circles represent sampling points where there
was no data available. The values at the points in the diagram indicate the displacements
relative to the start point (23300, 388203).

0.0 1.5 2.5 4.0 6.6 8.8 9.0

1.0

2.0

3.0

4.0

5.0

0.0

(23300.0,388203.0)

Values in a Field with id = WindDirId

8 7 3 8 _ 3 8
3 4 _ 3 4 5 3
7 4 55 7 _ 55 7
4 _ 48 _ _ 48 _
6 7 2 4 _ 2 5
3 1 _ 4 4 5 3

Values in a Field with id = WinSpeedId

1.8 7.3 3.5 1.8 7.5 _ 1.8
3.3 1.4 _ 3.3 1.4 0.5 3.3
7.4 4.4 5.1 7.4 4.4 5.1 7.0
4.1 _ 4.8 4.1 _ 4.8 _
1.8 7.3 3.5 1.8 7.5 _ 1.8
3.3 1.4 _ 3.3 1.4 0.5 3.3

GRDValue Representation

SRID = 1

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

50

numFields = 2
startPt = { 23300.0, 388203.0, 0, 0 }
gridBasisVectors = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1}}
fieldIds = { WindDirID, WindSpeedID}
fieldTypes integer = { grdFieldINT, grdFieldFLOAT}
dimensions = {7, 6, 1, 1 }
nonUniformSteps = {{0,1.5,2.5,4,6.6,8.8,9}, {},{}, {}}
tileSizes = {3, 4, 1, 1}
tiles = {
 { // tile 0
 {{ 8,3,7,4}, {7,4,4,_}, {3,_,55,48}} // WinDirID
 {{ t,t,t,t}, {t,t,t,f}, {t,f,t,t}} // WinDirID flags
 {{ 1.8,3.3,7.4,4.1}, {7.3,1.4,4.4,_}, {3.5,_,5.1,4.8}} // WinSpeedId
 {{ t,t,t,t}, {t,t,t,f}, {t,f,t,t}} // WinSpeedID flags
 }
 { // tile 1
 {{ 6,3,_,_}, {7,1,_,_}, {2,_,_,_}} // WinDirID
 {{ t,t,f,f}, {t,t,f,f}, {t,f,f,f}} // WinDirID flags
 {{ 1.8,3.3,_,_}, {7.3,1.4,_,_}, {3.5,_,_,_}} // WinSpeedId
 {{ t,t,f,f}, {t,t,f,f}, {t,f,f,f}} // WinSpeedID flags
 }
 { // tile 2
 {{ 8,3,7,_}, {_,4,_,_}, {3,5,55,48}} // WinDirID
 {{ t,t,t,f}, {f,t,f,f}, {t,t,t,t}} // WinDirID flags
 {{ 1.8,3.3,7.4,4.1}, {7.5,1.4,4.4,_}, {_,0.5,5.1,4.8}} // WinSpeedId
 {{ t,t,t,t}, {t,t,t,f}, {f,t,t,t}} // WinSpeedID flags
 }
 { // tile 3
 {{ 4,4,_,_}, {_,4,_,_}, {2,5,_,_}} // WinDirID
 {{ t,t,f,f}, {f,t,f,f}, {t,t,f,f}} // WinDirID flags
 {{ 1.8,3.3,_,_}, {7.5,1.4,_,_}, {_,0.5,_,_}} // WinSpeedId
 {{ t,t,f,f}, {t,t,f,f}, {f,t,f,f}} // WinSpeedID flags
 }
 { // tile 4
 {{ 8,3,7,_}, {_,_,_,_}, {_,_,_,_}} // WinDirID
 {{ t,t,t,f}, {f,f,f,f}, {f,f,f,f}} // WinDirID flags
 {{ 1.8,3.3,7.0,_}, {_,_,_,_}, {_,_,_,_}} // WinSpeedId
 {{ t,t,t,f}, {f,f,f,f}, {f,f,f,f}} // WinSpeedID flags
 }
 { // tile 5
 {{ 5,3,_,_}, {_,_,_,_}, {_,_,_,_}} // WinDirID
 {{ t,t,f,f}, {f,f,f,f}, {f,f,f,f}} // WinDirID flags
 {{ 1.8,3,3_,_}, {_,_,_,_}, {_,_,_,_}} // WinSpeedId
 {{ t,t,f,f}, {f,f,f,f}, {f,f,f,f}} // WinSpeedID flags
 }
}

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

51

GRDSpec Representation

startPt = {0,0,0,0} // start point set to 0,0,0,0
gridBasisVectors = {} // grid step vector not set
nonUniformSteps = {{},{},{},{}} // no nonuniform steps
fieldIds = {} // field ids not set
dimensions = {7, 6, 1, 1} // the dimensions of the grid

Appendix C: Grid Import-Export Format (GIEF)

GIEF is the import/export format used by the Grid DataBlade. External conversion
programs are employed to convert grid files between other formats (e.g., GeoTiff, GRIB,
and dialects of NetCDF) and one or more GIEF files.

GIEF is a NetCDF dialect that is general enough to represent any grids of primitive scalar
data elements (i.e., 1, 2 or 4-byte integers, 4 or 8-byte floating point values). It allows
source grid files of various formats to have one internal uniform representation.

A key feature of GIEF is that there is a simple mapping from GIEF files to database
tables. This mapping ensures that any database programmer/DBA will be able to verify
that GIEF file importing and exporting is error-free, simply by inspecting the database
contents.

Features

• Industry-standard mapping projections
• Affine transformations (i.e., translation, scaling and rotation)
• 4D grids (with 2D and 3D grids as special cases)
• Global attributes (scalar or 1D vector4; e.g., text strings and valid ranges)
• Grid-specific variable attributes (scalar or 1D vector; e.g., a fill value)
• Optional mapping of integer values to floating point values.
• Nonuniform axes

Limitations

• All grids in a GIEF file must have the same dimensions.

4 The first release of the Grid DataBlade with GIEF support will only handle scalar attributes and text
strings. The ability to handle ranges or arrays will not be present until a later release.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

52

• A maximum of ten grids may be stored in a single GIEF file.5

Note: A simple strategy for overcoming these limitations is for the conversion programs
to generate multiple GIEF files from a single source file.

Conventions

Grid Size

• Every GIEF file has exactly four dimensions declared. To support 1D, 2D or 3D

grids, one or more of these dimensions will have a value of 1.
• The dimensions must be listed in the same order in all grid variable declarations in a

particular GIEF file.

Supporting Grids that Wrap

Grid dimensions that should wrap around (e.g., columns in a grid expressed in a
geographic reference system that spans the range 0° � 360°), should be denoted by an
attribute called grid_wraps_in. The grid_wraps_in attribute should have as a value a
comma-separated list of dimension names that can wrap. For example, if the �column�
dimension should wrap in a particular GIEF file, the GIEF file should contain the line:

 :grid_wraps_in = “column”;

Mapping Projection

Each GIEF file has a special global attribute called �srtext� whose value is the OGC well-
known-text form of a spatial reference system. A converter that deals with only one type
of projection can construct a suitable string by concatenating a few string literals with
some integer and floating point values.

A formal description of spatial reference text can be found in
http://www.opengis.org/techno/specs/99-049.rtf on page 70; however, the following
example of the spatial reference text for Lambert Conformal projection is taken from
http://www.opengis.org/techno/interop/EPSG2WKT.TXT.

PROJCS["Madrid 1870 (Madrid) / Spain",GEOGCS["Madrid 1870
(Madrid)",DATUM["Madrid_1870",SPHEROID["Struve
1860",6378298.3,294.73]],PRIMEM["Madrid",-
3.68793888888889],UNIT["degree",0.0174532925199433]],PROJECTION["Lambert_C

5 In the case of FNMOC data sets, typically a single grid will be stored in a single file, with the exception
being vector data (e.g., wind components).

http://www.opengis.org/techno/specs/99-049.rtf
http://www.opengis.org/techno/interop/EPSG2WKT.TXT

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

53

onformal_Conic_1SP"],PARAMETER["latitude_of_origin",40],PARAMETER["central_
meridian",0],PARAMETER["scale_factor",0.9988085293],PARAMETER["false_easting
",600000],PARAMETER["false_northing",600000],UNIT["metre",1]]

All coordinate systems supported by the IBM/Informix Spatial DataBlade can be used by
GIEF. In addition to geographic coordinate systems, this includes the following planar
coordinate systems:

Aitoff, Albers, Azimuthal_Equidistant,
Behrmann, Bonne, Cassini, Craster_Parabolic, Cylindrical_Equal_Area,
Double_Stereographic, Eckert_I, Eckert_II, Eckert_III, Eckert_IV, Eckert_V, Eckert_VI,
Equidistant_Conic, Equidistant_Cylindrical, Flat_Polar_Quartic,
Gall_Stereographic, Gauss_Kruger, Gnomonic, Hammer_Aitoff,
Hotine_Oblique_Mercator_Azimuth_Center,
Hotine_Oblique_Mercator_Azimuth_Natural_Origin,
Hotine_Oblique_Mercator_Two_Point_Center,
Hotine_Oblique_Mercator_Two_Point_Natural_Origin,
Krovak, Lambert_Azimuthal_Equal_Area, Lambert_Conformal_Conic, Loximuthal,
Mercator, Miller_Cylindrical, Mollweide, New_Zealand_Map_Grid,
Orthographic, Plate_Carree, Polyconic, Quartic_Authalic, Robinson,
Sinusoidal, Stereographic, Times, Transverse_Mercator, Two_Point_Equidistant,
Van_der_Grinten_I, Vertical_Near_Side_Perspective,
Winkel_I, Winkel_II, Winkel_Tripel.

A list of sample spatial reference text for each of these projections (with the exception of
Gauss_Kruger and Double_Stereographic) is given in Section �Sample Spatial Reference
Text� below.

Translation

Each GIEF file must have a global attribute called �translation� which has four double
precision values. The translation attribute denotes the location of the first grid element in
the spatial projection.

To support projection transformations, the first and second of the four double precision
values defining the translation must be the x (or longitude) and y (or latitude) values,
respectively. The third value generally represents z (or equivalent), while the fourth
value normally represents time.6 (To support geodetic indexing, this convention must be
followed.)

6 A FNMOC requirement is that the fourth element of the translation value represents time and is always
zero, to denote that times are expressed in absolute terms.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

54

Affine Transformation

Each GIEF file may have an affine transformation expressed by a global attribute called
�affine_transformation� in the form:

:affine_transformation = a1,a2,a3,a4,

b1,b2,b3,b4,
c1,c2,c3,c4,
d1,d2,d3,d4;

Grid locations will be mapped to spatial coordinates in the projection by the expressions:

spatial[1] = a1*gridloc[1] + a2*gridloc[2] + a3*gridloc[3] + a4*gridloc[4] + translation[1]
spatial[2] = b1*gridloc[1] + b2*gridloc[2] + b3*gridloc[3] + b4*gridloc[4] + translation[2]
spatial[3] = c1*gridloc[1] + c2*gridloc[2] + c3*gridloc[3] + c4*gridloc[4] + translation[3]
spatial[4] = d1*gridloc[1] + d2*gridloc[2] + d3*gridloc[3] + d4*gridloc[4] + translation[4]

Spatial[1] and spatial[2] will be treated as holding the x (or longitude) and y (or latitude) values,
respectively, during any changes in projections.

If the affine_transformation attribute is not present, it will be assumed to have the value:

 1,0,0,0,

0,1,0,0,
0,0,1,0,
0,0,0,1

which can be viewed as an identity matrix. The Grid DataBlade requires that the
affine_transformation be invertible.

Nonuniform Axes

Nonuniform axes (i.e., those in which the values are not sampled at constant intervals
along a particular axis) may be specified by 1D variables that are typed to a particular
dimension. The name of the variable should be the same as the name as the dimension.
The values are declared as single or double precision values and must be monotonically
increasing. They effectively modify the gridloc[i] value in the equations described in the
preceding section on affine transformations; i.e., the following statement:

 double gridDim2(gridDim2);
 gridDim2= 1,2,3,6,7,8,10,120,200;

results in the equations:

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

55

spatial[1] = a1*gridloc[1] + a2*gridDim2[gridloc[2]] + a3*gridloc[3] + a4*gridloc[4] + translation[1]
spatial[2] = b1*gridloc[1] + b2*gridDim2[gridloc[2]] + b3*gridloc[3] + b4*gridloc[4] + translation[2]
spatial[3] = c1*gridloc[1] + c2*gridDim2[gridloc[2]] + c3*gridloc[3] + c4*gridloc[4] + translation[3]
spatial[4] = d1*gridloc[1] + d2*gridDim2[gridloc[2]] + d3*gridloc[3] + d4*gridloc[4] + translation[4]

A more complete example is:

 dimensions:
 time = 4;
 level = 3;
 row = 2;
 column = 2;
 variables:
 float time(time);
 float level(level);
 float wind_u(time,level,row,column);
 ...
 data:
 time = 1,4,10,11;
 level = 10,11,29;
 wind_u = 1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9,9.8,8.7,7.6,6.5,

 5.4,4.3,3.2,2.1,1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9,
 9.8,8.7,7.6,6.5,5.4,4.3,3.2,2.1,1.2,2.3,3.4,4.5,
 5.6,6.7,7.8,8.9,9.8,8.7,7.6,6.5,5.4,4.3,3.2,2.1;

To support geodetic indexing, the time units must be in Unix Epoch time, notional
seconds since the beginning of January 1, 1970, UTC. Some applications may require a
non-uniform axis attribute for time.7

There may or may not be attributes for dimensions other than time since these can often
be denoted by non-zero entries in a translation attribute.

Variable-Specific Attributes

The standard NetCDF _FillValue attribute is used to denote missing values. It is the only
variable specific attribute which the Grid DataBlade will actively recognize. All other
attributes are simply passed through to appropriately named columns in the database (see
the section �Mapping Names from GIEF to the Database� below).

Other Attributes

There are a number of attributes (global or specific to variables) that GIEF does not
interpret itself, but should be a part of GIEF files for the sake of converter programs that

7 This is a FNMOC requirement.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

56

need to convert GIEF to another format. These attributes are described in the document
�Standard FNMOC GIEF Attributes�.

Grid Variables

The only variables that may be present in the GIEF file are those described above (e.g.,
the nonuniform variables) and those holding the actual gridded data. All variables
holding gridded data must have the same set of dimensions. The names of the grid
variables are preserved in the database. Missing grid values are handled by NetCDF�s
_FillValue convention.

Mapping Names from GIEF to the Database

When a GIEF file is loaded into row of a database table, the information contained in its
variables and attributes must be mapped to columns in the database. Database
administrators need to know this mapping so they know what columns to include when
defining a table. Database clients need to know this mapping so that they can search a
table for rows based on particular attributes. Programmers writing converter programs
must be aware of the name mappings to avoid producing names that inadvertently clash
with each other. This mapping is as follows:

• 1D variables define the nonuniform axis characteristics of a grdvalue stored in a

column called grid.
• Srtext, translation, and affine_transformation global attributes define the SRID and

basis vector attributes of the grdvalue.
• Variables containing grids are represented as fields in the grdvalue. The names of the

variables are stored in a column called field_names as a comma-separated list. For
example, if the GIEF file contained the variables pressure, temperature, and salinity,
the field_names column might have the value �pressure,temperature,salinity�� (the
exact order of the names in the list depends on the order in which they appear in the
GIEF file).

• The names of the dimensions are stored in a column called dim_names as a comma-
separated list.

• A global attribute named $t is mapped to a database column called g_$t. For
example, a global attribute called center_id would be mapped to a column called
g_center_id.

• An attribute called $t of a variable called $v is mapped to a column called l_$v__$t
(note that there are two underscores separating $v and $t). For example, an attribute
called range of a variable called depth would be mapped to a column called
l_depth__range.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

57

An Example GIEF File (as a CDL File)

Note: this example does not include the FNMOC attributes described in the document
�Standard FNMOC GIEF Attributes�. A more complete GIEF file containing those
attributes is provided in that document.

netcdf GIEF-2002031312-000-air_temp-NOGAPS {
dimensions:
 time = 1;
 level = 4 ;
 row = 4 ;
 column = 3 ;
variables:
 float air_temp(column,row,time,level) ;
 double level(level);
 double time(time);

// global attributes:
 :dtg = "2002031312" ;
 :model_name = "NOGAPS" ;
 :geom_name = "global_4x6" ;
 :lvl_type = "isbr_lvl" ;
 :unit_name = "K" ;
 :translation = 3000,3032,5,0;
 :affine_transformation = 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1;
 :srtext =
"PROJCS['Madrid 1870 (Madrid) / Spain',GEOGCS['Madrid 1870 Madrid)',
DATUM['Madrid_1870',SPHEROID['Struve1860',6378298.3,294.73]],
PRIMEM['Madrid',-3.68793888888889],UNIT['degree',0.0174532925199433]],
PROJECTION['Lambert_Conformal_Conic_1SP'],
PARAMETER['latitude_of_origin',40],PARAMETER['central_meridian',0],
PARAMETER['scale_factor',0.9988085293],PARAMETER['false_easting',600000],
PARAMETER['false_northing',600000],UNIT['metre',1]]";

data:
 level = 0, 5, 6, 10;
 time = 1000300;
 air_temp =
 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278,
 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278,
 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278,
 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278,
 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278,
 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278,
 241.5278, 241.5278, 241.5278, 241.5278, 241.5278, 241.5278;
}

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

58

Sample Spatial Reference Text

The following projection code has been extracted from the IBM/Informix Spatial
DataBlade using the se_createsrtext() function applied to selected factory ids.

Aitoff

PROJCS["Sphere_Aitoff",GEOGCS["GCS_Sphere",DATUM["D_Sphere",
SPHEROID["Sphere",6371000.0,0.0]],PRIMEM["Greenwich",0.0],UN
IT["Degree",0.0174532925199433]],PROJECTION["Aitoff"],PARAME
TER["False_Easting",0.0],PARAMETER["False_Northing",0.0],PAR
AMETER["Central_Meridian",0.0],UNIT["Meter",1.0]]

Aitoff
PROJCS["World_Aitoff",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_198
4",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Gre
enwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["
Aitoff"],PARAMETER["False_Easting",0.0],PARAMETER["False_Nor
thing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Meter",1
.0]]

Albers
PROJCS["Africa_Albers_Equal_Area_Conic",GEOGCS["GCS_WGS_1984
",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.25722
3563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199
433]],PROJECTION["Albers"],PARAMETER["False_Easting",0.0],PA
RAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",2
5.0],PARAMETER["Standard_Parallel_1",20.0],PARAMETER["Standa
rd_Parallel_2",23.0],PARAMETER["Latitude_Of_Origin",0.0],UNI
T["Meter",1.0]]

Azimuthal_Equidistant
PROJCS["Sphere_Azimuthal_Equidistant",GEOGCS["GCS_Sphere",DA
TUM["D_Sphere",SPHEROID["Sphere",6371000.0,0.0]],PRIMEM["Gre
enwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["
Azimuthal_Equidistant"],PARAMETER["False_Easting",0.0],PARAM
ETER["False_Northing",0.0],PARAMETER["Central_Meridian",0.0]
,PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]

Behrmann
PROJCS["World_Behrmann",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1
984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["G
reenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION
["Behrmann"],PARAMETER["False_Easting",0.0],PARAMETER["False
_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Mete
r",1.0]]

Bonne
PROJCS["World_Bonne",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984
",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Gree
nwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["B
onne"],PARAMETER["False_Easting",0.0],PARAMETER["False_North
ing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETER["Stand
ard_Parallel_1",60.0],UNIT["Meter",1.0]]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

59

Cassini
PROJCS["World_Cassini",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_19
84",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Gr
eenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION[
"Cassini"],PARAMETER["False_Easting",0.0],PARAMETER["False_N
orthing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETER["S
cale_Factor",1.0],PARAMETER["Latitude_Of_Origin",0.0],UNIT["
Meter",1.0]]

Craster_Parabolic
PROJCS["World_Craster_Parabolic",GEOGCS["GCS_WGS_1984",DATUM
["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],P
ROJECTION["Craster_Parabolic"],PARAMETER["False_Easting",0.0
],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridia
n",0.0],UNIT["Meter",1.0]]

Cylindrical_Equal_Area
PROJCS["World_Cylindrical_Equal_Area",GEOGCS["GCS_WGS_1984",
DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.2572235
63]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943
3]],PROJECTION["Cylindrical_Equal_Area"],PARAMETER["False_Ea
sting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Centr
al_Meridian",0.0],PARAMETER["Standard_Parallel_1",0.0],UNIT[
"Meter",1.0]]

Eckert_III
PROJCS["World_Eckert_III",GEOGCS["GCS_WGS_1984",DATUM["D_WGS
_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM[
"Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTI
ON["Eckert_III"],PARAMETER["False_Easting",0.0],PARAMETER["F
alse_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["
Meter",1.0]]

Eckert_II
PROJCS["World_Eckert_II",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_
1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["
Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTIO
N["Eckert_II"],PARAMETER["False_Easting",0.0],PARAMETER["Fal
se_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Me
ter",1.0]]

Eckert_I
PROJCS["World_Eckert_I",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1
984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["G
reenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION
["Eckert_I"],PARAMETER["False_Easting",0.0],PARAMETER["False
_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Mete
r",1.0]]

Eckert_IV
PROJCS["World_Eckert_IV",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_
1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["
Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTIO
N["Eckert_IV"],PARAMETER["False_Easting",0.0],PARAMETER["Fal
se_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Me
ter",1.0]]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

60

Eckert_VI
PROJCS["World_Eckert_VI",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_
1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["
Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTIO
N["Eckert_VI"],PARAMETER["False_Easting",0.0],PARAMETER["Fal
se_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Me
ter",1.0]]

Eckert_V
PROJCS["World_Eckert_V",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1
984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["G
reenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION
["Eckert_V"],PARAMETER["False_Easting",0.0],PARAMETER["False
_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Mete
r",1.0]]

Equidistant_Conic
PROJCS["World_Equidistant_Conic",GEOGCS["GCS_WGS_1984",DATUM
["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],P
ROJECTION["Equidistant_Conic"],PARAMETER["False_Easting",0.0
],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridia
n",0.0],PARAMETER["Standard_Parallel_1",60.0],PARAMETER["Sta
ndard_Parallel_2",60.0],PARAMETER["Latitude_Of_Origin",0.0],
UNIT["Meter",1.0]]

Equidistant_Cylindrical
PROJCS["World_Equidistant_Cylindrical",GEOGCS["GCS_WGS_1984"
,DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223
563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.01745329251994
33]],PROJECTION["Equidistant_Cylindrical"],PARAMETER["False_
Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Cen
tral_Meridian",0.0],PARAMETER["Standard_Parallel_1",60.0],UN
IT["Meter",1.0]]

Flat_Polar_Quartic
PROJCS["World_Flat_Polar_Quartic",GEOGCS["GCS_WGS_1984",DATU
M["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]]
,PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],
PROJECTION["Flat_Polar_Quartic"],PARAMETER["False_Easting",0
.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Merid
ian",0.0],UNIT["Meter",1.0]]

Gall_Stereographic
PROJCS["World_Gall_Stereographic",GEOGCS["GCS_WGS_1984",DATU
M["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]]
,PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],
PROJECTION["Gall_Stereographic"],PARAMETER["False_Easting",0
.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Merid
ian",0.0],UNIT["Meter",1.0]]

Gnomonic
PROJCS["North_Pole_Gnomonic",GEOGCS["GCS_WGS_1984",DATUM["D_
WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIM
EM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJE
CTION["Gnomonic"],PARAMETER["False_Easting",0.0],PARAMETER["
False_Northing",0.0],PARAMETER["Longitude_Of_Center",0.0],PA
RAMETER["Latitude_Of_Center",90.0],UNIT["Meter",1.0]]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

61

Hammer_Aitoff
PROJCS["World_Hammer_Aitoff",GEOGCS["GCS_WGS_1984",DATUM["D_
WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIM
EM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJE
CTION["Hammer_Aitoff"],PARAMETER["False_Easting",0.0],PARAME
TER["False_Northing",0.0],PARAMETER["Central_Meridian",0.0],
UNIT["Meter",1.0]]

Hotine_Oblique_Mercator_Two_Point_Natural_Origin
PROJCS["World_Hotine",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_198
4",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Gre
enwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["
Hotine_Oblique_Mercator_Two_Point_Natural_Origin"],PARAMETER
["False_Easting",0.0],PARAMETER["False_Northing",0.0],PARAME
TER["Latitude_Of_1st_Point",0.0],PARAMETER["Latitude_Of_2nd_
Point",60.0],PARAMETER["Scale_Factor",1.0],PARAMETER["Longit
ude_Of_1st_Point",0.0],PARAMETER["Longitude_Of_2nd_Point",60
.0],PARAMETER["Latitude_Of_Center",40.0],UNIT["Meter",1.0]]

Krovak
PROJCS["SJTSK_Ferro_Krovak_East_North",GEOGCS["GCS_S_JTSK_Fe
rro",DATUM["D_S_JTSK",SPHEROID["Bessel_1841",6377397.155,299
.1528128]],PRIMEM["Ferro",-
.66666666666667],UNIT["Degree",0.0174532925199433]],PROJECTI
ON["Krovak"],PARAMETER["False_Easting",0.0],PARAMETER["False
_Northing",0.0],PARAMETER["Pseudo_Standard_Parallel_1",78.5]
,PARAMETER["Scale_Factor",0.9999],PARAMETER["Azimuth",30.288
13975277778],PARAMETER["Longitude_Of_Center",42.5],PARAMETER
["Latitude_Of_Center",49.5],PARAMETER["X_Scale",1.0],PARAMET
ER["Y_Scale",1.0],PARAMETER["XY_Plane_Rotation",90.0],UNIT["
Meter",1.0]]

Lambert_Azimuthal_Equal_Area
PROJCS["North_Pole_Lambert_Azimuthal_Equal_Area",GEOGCS["GCS
_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,
298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174
532925199433]],PROJECTION["Lambert_Azimuthal_Equal_Area"],PA
RAMETER["False_Easting",0.0],PARAMETER["False_Northing",0.0]
,PARAMETER["Central_Meridian",0.0],PARAMETER["Latitude_Of_Or
igin",90.0],UNIT["Meter",1.0]]

Lambert_Conformal_Conic
PROJCS["Africa_Lambert_Conformal_Conic",GEOGCS["GCS_WGS_1984
",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.25722
3563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199
433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER["False
_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Ce
ntral_Meridian",25.0],PARAMETER["Standard_Parallel_1",20.0],
PARAMETER["Standard_Parallel_2",-
3.0],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]

Loximuthal
PROJCS["World_Loximuthal",GEOGCS["GCS_WGS_1984",DATUM["D_WGS
_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM[
"Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTI
ON["Loximuthal"],PARAMETER["False_Easting",0.0],PARAMETER["F
alse_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAME
TER["Central_Parallel",40.0],UNIT["Meter",1.0]]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

62

Mercator
PROJCS["World_Mercator",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1
984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["G
reenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION
["Mercator"],PARAMETER["False_Easting",0.0],PARAMETER["False
_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETER[
"Standard_Parallel_1",0.0],UNIT["Meter",1.0]]

Miller_Cylindrical
PROJCS["World_Miller_Cylindrical",GEOGCS["GCS_WGS_1984",DATU
M["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]]
,PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],
PROJECTION["Miller_Cylindrical"],PARAMETER["False_Easting",0
.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Merid
ian",0.0],UNIT["Meter",1.0]]

Mollweide
PROJCS["World_Mollweide",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_
1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["
Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTIO
N["Mollweide"],PARAMETER["False_Easting",0.0],PARAMETER["Fal
se_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Me
ter",1.0]]

New_Zealand_Map_Grid
PROJCS["GD_1949_New_Zealand_Map_Grid",GEOGCS["GCS_New_Zealan
d_1949",DATUM["D_New_Zealand_1949",SPHEROID["International_1
924",6378388.0,297.0]],PRIMEM["Greenwich",0.0],UNIT["Degree"
,0.0174532925199433]],PROJECTION["New_Zealand_Map_Grid"],PAR
AMETER["False_Easting",2510000.0],PARAMETER["False_Northing"
,6023150.0],PARAMETER["Longitude_Of_Origin",173.0],PARAMETER
["Latitude_Of_Origin",-41.0],UNIT["Meter",1.0]]

Orthographic
PROJCS["North_Pole_Orthographic",GEOGCS["GCS_WGS_1984",DATUM
["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],P
ROJECTION["Orthographic"],PARAMETER["False_Easting",0.0],PAR
AMETER["False_Northing",0.0],PARAMETER["Longitude_Of_Center"
,0.0],PARAMETER["Latitude_Of_Center",90.0],UNIT["Meter",1.0]
]

Plate_Carree
PROJCS["World_Plate_Carree",GEOGCS["GCS_WGS_1984",DATUM["D_W
GS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIME
M["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJEC
TION["Plate_Carree"],PARAMETER["False_Easting",0.0],PARAMETE
R["False_Northing",0.0],PARAMETER["Central_Meridian",0.0],UN
IT["Meter",1.0]]

Polyconic
PROJCS["World_Polyconic",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_
1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["
Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTIO
N["Polyconic"],PARAMETER["False_Easting",0.0],PARAMETER["Fal
se_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETE
R["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

63

Quartic_Authalic
PROJCS["World_Quartic_Authalic",GEOGCS["GCS_WGS_1984",DATUM[
"D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],P
RIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PR
OJECTION["Quartic_Authalic"],PARAMETER["False_Easting",0.0],
PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian"
,0.0],UNIT["Meter",1.0]]

Robinson
PROJCS["World_Robinson",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1
984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["G
reenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION
["Robinson"],PARAMETER["False_Easting",0.0],PARAMETER["False
_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Mete
r",1.0]]

Sinusoidal
PROJCS["World_Sinusoidal",GEOGCS["GCS_WGS_1984",DATUM["D_WGS
_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM[
"Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTI
ON["Sinusoidal"],PARAMETER["False_Easting",0.0],PARAMETER["F
alse_Northing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["
Meter",1.0]]

Stereographic
PROJCS["World_Stereographic",GEOGCS["GCS_WGS_1984",DATUM["D_
WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIM
EM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJE
CTION["Stereographic"],PARAMETER["False_Easting",0.0],PARAME
TER["False_Northing",0.0],PARAMETER["Central_Meridian",0.0],
PARAMETER["Scale_Factor",1.0],PARAMETER["Latitude_Of_Origin"
,0.0],UNIT["Meter",1.0]]

Times
PROJCS["World_Times",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984
",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Gree
nwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["T
imes"],PARAMETER["False_Easting",0.0],PARAMETER["False_North
ing",0.0],PARAMETER["Central_Meridian",0.0],UNIT["Meter",1.0
]]

Transverse_Mercator
PROJCS["WGS_1984_UTM_Zone_2N",GEOGCS["GCS_WGS_1984",DATUM["D
_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRI
MEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJ
ECTION["Transverse_Mercator"],PARAMETER["False_Easting",5000
00.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Mer
idian",-
171.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_
Of_Origin",0.0],UNIT["Meter",1.0]]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

64

Two_Point_Equidistant
PROJCS["World_Two_Point_Equidistant",GEOGCS["GCS_WGS_1984",D
ATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.25722356
3]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433
]],PROJECTION["Two_Point_Equidistant"],PARAMETER["False_East
ing",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Latitud
e_Of_1st_Point",0.0],PARAMETER["Latitude_Of_2nd_Point",60.0]
,PARAMETER["Longitude_Of_1st_Point",0.0],PARAMETER["Longitud
e_Of_2nd_Point",60.0],UNIT["Meter",1.0]]

Van_der_Grinten_I
PROJCS["World_Van_der_Grinten_I",GEOGCS["GCS_WGS_1984",DATUM
["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],P
ROJECTION["Van_der_Grinten_I"],PARAMETER["False_Easting",0.0
],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridia
n",0.0],UNIT["Meter",1.0]]

Vertical_Near_Side_Perspective
PROJCS["Sphere_Vertical_Perspective",GEOGCS["GCS_WGS_1984",D
ATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.25722356
3]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433
]],PROJECTION["Vertical_Near_Side_Perspective"],PARAMETER["F
alse_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER
["Longitude_Of_Center",0.0],PARAMETER["Latitude_Of_Center",0
.0],PARAMETER["Height",35800000.0],UNIT["Meter",1.0]]

Winkel_II
PROJCS["World_Winkel_II",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_
1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["
Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTIO
N["Winkel_II"],PARAMETER["False_Easting",0.0],PARAMETER["Fal
se_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETE
R["Standard_Parallel_1",50.4597762521898],UNIT["Meter",1.0]]

Winkel_I
PROJCS["World_Winkel_I",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1
984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["G
reenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION
["Winkel_I"],PARAMETER["False_Easting",0.0],PARAMETER["False
_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETER[
"Standard_Parallel_1",50.4597762521898],UNIT["Meter",1.0]]

Winkel_Tripel
PROJCS["World_Winkel_Tripel_NGS",GEOGCS["GCS_WGS_1984",DATUM
["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],P
ROJECTION["Winkel_Tripel"],PARAMETER["False_Easting",0.0],PA
RAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",0
.0],PARAMETER["Standard_Parallel_1",50.467],UNIT["Meter",1.0
]]

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

65

Appendix D: Using S-Expressions to Specify Grid Extraction

This appendix describes a proposed standard for specifying GRDSpec values, the abstract
datatype used by the Grid DataBlade to control what information is extracted from a
GRDValue. The standard is based on S-expressions, which are a hierarchical text based
data structure in the style of LISP.

Briefly, an S-expression consists of a set of zero or more terms enclosed by a pair of
parenthesis. Each term is either an atom or another S-expression. An atom can be any
string of characters that does not include a parenthesis, white space, or a quote.
Alternatively, an atom can be a string of characters surrounded by double quotes (�)8.

Terms in S-Expressions Understood by the Grid DataBlade

The Grid DataBlade understands the following terms (bold values are to be interpreted as
literals):

(fill_holes)
(translation x y z t)
(affine_transformation r1,1 r1,2 r1,3 r1,4 � r4,1 r4,2 r4,3 r4,4)
(dim_sizes dim1_size dim2_size dim3_size dim4_size)
(dim_names dim1_name dim2_name dim3_name dim4_name)
(coord_wraps_in (axisName minValue maxValue) (�))
(nonuniform dimi_name position1 position2 � position n)
(linear_interpolation dimi_name �)
(variables var1_name � varv_name)
(srtext text)

Notes:

• The srtext, translation, and affine_transformation terms have descriptions identical

to the identically named attributes in a GIEF file. The one exception is that srtext can
use (@) in place of double quotes (�) if desired. That simplifies embedding the srtext
inside of a string in a scripting file.

• The dim_names term is a list of the names of the dimensions (in most major to least
major order) of the grid. This can be used to replace the dimension names in the
exported file.

• The variables term lists the variables to be extracted from the source grid. These
names must be drawn from the set of names of fields actually in the grid.

• The dim_sizes term specifies the number of samples in each dimension.
• The nonuniform terms (there may be one for each dimension) allow one to list the

values along a particular dimension where values should be sampled.

8 The Grid DataBlade functions will transform backticks (`) to double quotes to provide an additional level
of quoting when using command line utilities such as dbaccess.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

66

• The fill_holes term indicates that the extract should attempt to patch holes in the data
with adjacent values. The resulting extracted grid may look more complete without
the holes, but the values at those positions will not reflect the data that would have
been there if there had not been holes in the data. Note: fill_holes operates by
replicating non-missing data in place of missing data, prior to linear interpolation. It
has no effect when linear interpolation is not in effect.

• The linear_interpolation term is used to control whether nearest neighbours or linear
interpolation is used to compute a value for a sample that is not exactly on a grid
point. If a particular dim_name is listed in the term, the corresponding dimension
will be linearly interpolated.

• The coord_wraps_in term is used to denote which world dimensions wrap-around,
and at what values they wrap-around. The allowed values for the axisName are x, y,
z, and t. For example, geographic coordinates might have the term: (coord_wraps_in
(x -180 180)). To denote that, longitude wraps around.

In general, the order of the terms is arbitrary, with the following exceptions:

• The dim_sizes term must come before the dim_names term.
• The dim_names term must come before any term that references a dim_name, such

as nonuniform terms or a linear_interpolation term.

Example of an S-Expression

 ((srtext
�PROJCS[�Madrid 1870 (Madrid) / Spain�,GEOGCS[�Madrid 1870 Madrid)�,
DATUM[�Madrid_1870�,SPHEROID[�Struve1860�,6378298.3,294.73]],
PRIMEM[�Madrid�,-3.68793888888889],UNIT[�degree�,0.0174532925199433]],
PROJECTION[�Lambert_Conformal_Conic_1SP�],
PARAMETER[�latitude_of_origin�,40],PARAMETER[�central_meridian�,0],
PARAMETER[�scale_factor�,0.9988085293],PARAMETER[�false_easting�,600000],
PARAMETER[�false_northing�,600000],UNIT[�metre�,1]]�)
(dim_sizes 50 30 4 3)
(dim_names column row level time)
(translation 10 30 5 1000)
(variables air_temp)
 (affine_transform 1 0 0 0

 0 1 0 0
 0 0 1 0
 0 0 0 1)

(nonuniform time 3.0 4.5 9.2)
(nonuniform level 100 1000 2000 3000)

)

Alternatively, employing @ symbols instead of double quotes:

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

67

((srtext
�PROJCS[@Madrid 1870 (Madrid) / Spain@,GEOGCS[@Madrid 1870 Madrid)@,
DATUM[@Madrid_1870@,SPHEROID[@Struve1860@,6378298.3,294.73]],
PRIMEM[@Madrid@,-3.68793888888889],UNIT[@degree@,0.0174532925199433]],
PROJECTION[@Lambert_Conformal_Conic_1SP@],
PARAMETER[@latitude_of_origin@,40],PARAMETER[@central_meridian@,0],
PARAMETER[@scale_factor@,0.9988085293],PARAMETER[@false_easting@,60000
0],
PARAMETER[@false_northing@,600000],UNIT[@metre@,1]]�)
(dim_names column row level time)
(translation 10 30 5 1000)
(variables air_temp)
(dim_sizes 50 30 4 3)
(affine_transform 1 0 0 0

 0 1 0 0
 0 0 1 0
 0 0 0 1)

(nonuniform time 3.0 4.5 9.2)
(nonuniform level 100 1000 2000 3000)

)

Formal S-Expression Definition

Formally, S-expressions are specified as either:

• Tokens. The following is a specification of how tokens are built out of characters.

<token> ---> <identifier> | <boolean> | <number> | <string> | (|) | ' | , | .
<delimiter> ---> <whitespace> | (|) | " | ;
<whitespace> ---> <space or newline>
<comment> ---> ; <all subsequent characters up to a line break or EOF>
<atmosphere> ---> <whitespace> | <comment>
<intertoken space> ---> <atmosphere>*
<identifier> ---> <initial> <subsequent>*
<initial> ---> <letter> | <special initial>
<letter> ---> lower and upper-case letters: a-z A-Z
<special initial> ---> ! | $ | % | & | * | / | : | < | = | > | ? | ^ | _ | ~
<subsequent> ---> <initial> | <digit> | <special subsequent>
<special subsequent> ---> + | - | . | @
<digit> ---> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<boolean> ---> #t | #f
<number> ---> whatever is accepted by sscanf with %lf and %ld formats.
<string> ---> " <string element>* "
<string element> ---> <any character other than " or \> | \" | \\

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

68

Note: <intertoken space> may occur on either side of any token, but not within a
token. Tokens which require implicit termination (identifiers, numbers, and dot) may
be terminated by any <delimiter>, but not necessarily by anything else.

• S-expressions. These are made of tokens in the following way:

<expression> ---> <identifier> | <literal> | <compound>
<literal> ---> <boolean> | <number> | <string>
<compound> ---> (<expression> <expression>*)

Appendix E: Error Messages

There are two classes of error messages that may be generated by the Grid DataBlade,
namely, user errors and program failure errors. User errors are those that an application
implementor or database user may inadvertently cause. Program failure errors reflect
either programming errors in the DataBlade or a corrupted database, and are error
messages that the application implementor and database user should never be able to
bring about. Both classes of error messages, along with explanations, are described in
this section.

User Error Messages

The Grid DataBlade permits an application to create a grid that is larger than can be
represented in a 32-bit address space. Attempts to extract such a grid in its entirety
would cause memory allocation failures (at the very least), and so the Grid DataBlade
imposes some reasonable limits on sizes of grids that can be used in certain operations.
In the text below, GRDValues larger than 2GB will be described as �too large� (for the
operation).

The user error messages are as follows:

attempt to convert too large a grid to text: The server was requested to convert
a grid that was too large into text.

attempt to pass in too large a grid: The client program tried to pass in a
GRDValue that was too large.

attempt to return too large a grid: The client program tried to fetch a grid that
was too large.

attempt to extract too large a grid: The client program tried to extract a grid
that was too large.

attempt to update with too large a grid: The client program tried to update a
grid (in place) with a new grid that was too large.

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

69

update of GRDValue with NULL not permitted: The client program tried to
update a GRDValue with a null. This operation is considered illegal since
updates of GRDValues have a modify rather than a replace semantics.

update of null GRDValue not permitted: The client program tried to update a
GRDValue that was previously null. A null GRDValue can occur if a user
performs an insert with a column list that does not include the GRDValue
column. This is treated as illegal because the current update scheme does an
in-place update of the underlying large object and nulls have no underlying
large object.

incompatible GRDValue used in update: In order for one GRDValue to be
used to update another, the two GRDValues must have the same number of
dimensions, the same basis vectors, the same projections, and all the fields in
the source GRDValue must be present in the destination GRDValue. This
message indicates that one of more of the above requirements was not
satisfied.

BuildLargeObject: mi_lo_create failed: This error indicates that that the smart
blob space being used to store the GRDValue is too small. If it occurs, your
Informix database administrator should review the size of your data and how
much space is actually reserved in the associated smart blob space.

BuildLargeObject: mi_lo_write failed: See the above message.
attempt to copy large object failed: See the above message.
attempt to create large object failed: See the above message.

Program Failure Error Messages

The first class of program failure error messages indicates a memory problem inside the
server. This can be caused by errors in the server code, errors in the Grid DataBlade, or
errors in another party�s DataBlade (the server operates in a threaded memory model
without internal protection, so one DataBlade can interfere unintentionally with another,
or with the server itself). It can also be caused by attempting to execute a query that
requires more memory than available. These memory-related error messages are:

mi_alloc of size %d failed: Memory is corrupted or unavailable; the database
server may need to be restarted.

GRDCalloc of size %d,%d failed: See the above message.
mi_dalloc(%s,PER_COMMAND) failed: See the above message.

The second class of program failure error messages is �inaccessible�, since there is no
known way to generate them. Their presence may indicate a corrupted database (for
instance, if a hard disk failed or was not mounted), or an application program that has
managed to corrupt a GRDValue before it could be passed to the server. These
�inaccessible� error messages are:

'lots of writes' case not implemented yet:
BuildLargeObject: both lengths 0, programmer error

Grid DataBlade Programmer Guide Barrodale Computing Services Ltd.
Version 1.4 August 29, 2002

70

attempt to malloc a negative amount of memory
attempt to open LO failed
attempt to open connection failed
attempt to read very large LO in small way
bad symbol parsing
attempt to update GRDValue not in large objectmi_lo_close failed
mi_lo_open failed
mi_lo_read failed
mi_lo_read_withseek failed
mi_lo_readwithseek failed
mi_lo_writewithseek failed
not currently implemented
partialBlobRead exceeded length of memory blob
programmer error: bad blob storage type
unable to close large object
unable to open connection to ius database=%s user=%s password=%s
unable to reopen large object after creating it
unable to stat LO
unable to stat_size LO
unable to write to large object

	Introduction
	Overview
	Data Import and Export
	Functionality
	Sample Applications

	Grid-Spatial Conversion
	Overview
	The Grid Meta-Data
	The Forward Process
	The Reverse Process
	Extracting Grid Data
	Special Cases
	Step Sizes
	Non-Uniform Grid Spacings

	Sampling Schemes
	Nearest-Neighbors
	N-linear Interpolation

	Technical Models
	Operating Model
	Client Assembling vs. Server Assembling
	Pros to assembling on the client

	Data Assembling Model

	Datatypes

	Operation
	Installation and Configuration
	File-Oriented Interaction
	Importing GIEF Files
	Exporting GIEF Files

	Direct Object Interaction
	Storing Data
	Modifying Data
	Extracting Data

	Application Programming Interface (API)
	SQL API Library
	Examining a GRDValue
	Modifying a GRDValue
	Extracting a GRDValue
	Additional Support Functions

	C API Library
	Types and Constants:
	Creating and Setting a GRDValueI
	Examining the Contents of a GRDValueI
	Converting between a GRDValueI and a GRDValue (var binary) Type
	Creating and Setting a GRDSpecI Type
	Converting between a GRDSpecI and a GRDSpec (var binary) Type
	Example: Inserting Data Using ESQL/C
	Example: Extracting Data Using ESQL/C

	Java Client API
	Class Descriptions
	Example: Inserting Data Using Java
	Example: Extracting Data Using Java

	Appendix A: Examples of Grid-Spatial Conversion
	Default Grid Meta-Data
	Translated Grid
	Scaled Grid
	Column Major Scan Order
	Scan Direction
	Rotation
	Non-Uniform Grid Spacing
	Combining Non-Uniform Grid Spacing with Rotation
	Combining Non-Uniform Grid Spacing with Rotation and Translation

	Appendix B: Examples of GRDValue and GRDSpec
	Original Grid Base Location and Sampling Locations
	GRDValue Representation
	GRDSpec Representation

	Appendix C: Grid Import-Export Format (GIEF)
	Features
	Limitations
	Conventions
	Grid Size
	Supporting Grids that Wrap
	Mapping Projection
	Translation
	Affine Transformation
	Nonuniform Axes
	Variable-Specific Attributes
	Other Attributes
	Grid Variables

	Mapping Names from GIEF to the Database
	An Example GIEF File (as a CDL File)
	Sample Spatial Reference Text

	Appendix D: Using S-Expressions to Specify Grid Extraction
	Terms in S-Expressions Understood by the Grid DataBlade
	Example of an S-Expression
	Formal S-Expression Definition

	Appendix E: Error Messages
	User Error Messages
	Program Failure Error Messages

